Before Perseverance, Jezero crater’s floor was variably hypothesized to have a lacustrine, lava, volcanic airfall, or aeolian origin. SuperCam observations in the first 286 Mars days on Mars revealed a volcanic and intrusive terrain with compositional and density stratification. The dominant lithology along the traverse is basaltic, with plagioclase enrichment in stratigraphically higher locations. Stratigraphically lower, layered rocks are richer in normative pyroxene. The lowest observed unit has the highest inferred density and is olivine-rich with coarse (1.5 millimeters) euhedral, relatively unweathered grains, suggesting a cumulate origin. This is the first martian cumulate and shows similarities to martian meteorites, which also express olivine disequilibrium. Alteration materials including carbonates, sulfates, perchlorates, hydrated silicates, and iron oxides are pervasive but low in abundance, suggesting relatively brief lacustrine conditions. Orbital observations link the Jezero floor lithology to the broader Nili-Syrtis region, suggesting that density-driven compositional stratification is a regional characteristic.
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2–7 m, while providing data at sub-mm to mm scales. We report on SuperCam’s science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.
SuperCam is a highly integrated remote-sensing instrumental suite for NASA’s Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and Infrared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques (RMI). They provide information on the mineralogy, geochemistry and mineral context around the Perseverance Rover.The calibration of this complex suite is a major challenge. Not only does each technique require its own standards or references, their combination also introduces new requirements to obtain optimal scientific output. Elemental composition, molecular vibrational features, fluorescence, morphology and texture provide a full picture of the sample with spectral information that needs to be co-aligned, correlated, and individually calibrated.The resulting hardware includes different kinds of targets, each one covering different needs of the instrument. Standards for imaging calibration, geological samples for mineral identification and chemometric calculations or spectral references to calibrate and evaluate the health of the instrument, are all included in the SuperCam Calibration Target (SCCT). The system also includes a specifically designed assembly in which the samples are mounted. This hardware allows the targets to survive the harsh environmental conditions of the launch, cruise, landing and operation on Mars during the whole mission. Here we summarize the design, development, integration, verification and functional testing of the SCCT. This work includes some key results obtained to verify the scientific outcome of the SuperCam system.
This study proposes an innovative approach to semi-quantify the main iron corrosion phases found in corrosion systems of archaeological artefacts. This method is based on the treatment of Fourier Transform Infrared Spectroscopy (FTIR) data using a homemade spectra decomposition software (PALME). Its application was first tested on mixtures of pure iron corrosion standards. After optimization, it was used to study real archaeological samples and evaluate the stability of their corrosion system. Considering that reliable and repetitive results were reached using extremely small quantities of material, this method can be particularly suitable for the study of iron-based objects of cultural interest.
Perseverance explored two geological units on the floor of Jezero Crater over the first 420 Martian days of the Mars2020 mission. These units, the Máaz and Séítah formations, are interpreted to be igneous in origin, with traces of alteration. We report the detection of carbonate phases along the rover traverse based on laser-induced breakdown spectroscopy (LIBS), infrared reflectance spectroscopy (IRS), and time-resolved Raman (TRR) spectroscopy by the SuperCam instrument. Carbonates are identified through direct detection of vibrational modes of CO 3 functional groups (IRS and TRR), major oxides content, and ratios of C and O signal intensities (LIBS). In Séítah, the carbonates are consistent with magnesite-siderite solid solutions (Mg# of 0.42-0.70) with low calcium contents (<5 wt.% CaO). They are detected together with olivine in IRS and TRR spectra. LIBS and IRS also indicate a spatial association of the carbonates with clays. Carbonates in Máaz are detected in fewer points, as: (a) siderite (Mg# as low as 0.03); (b) carbonate-containing coatings, enriched in Mg (Mg# ∼0.82) and spatially associated with different salts. Overall, using conservative criteria, carbonate detections are rare in LIBS (∼30/2,000 points), IRS (∼15/2,000 points), and TRR (1/150 points) data. This is best explained by (a) a low carbonate content overall, (b) small carbonate grains mixed with other phases, (c) intrinsic complexity of in situ measurements. This is consistent with orbital observations of Jezero crater, and similar to compositions of carbonates previously reported in Martian meteorites. This suggests a limited carbonation of Jezero rocks by locally equilibrated fluids. Plain Language SummaryCarbonates are mineral phases that generally form by alteration of primary, magmatic minerals. This alteration process may occur under a variety of environmental conditions, which affect the resulting carbonate phase: its abundance, composition, spatial distribution and the mineral phases it is associated with. Consequently, carbonates keep track of the environmental conditions under which they formed, and in particular, the amount of CO 2 and liquid water involved in their formation. Understanding the history of both water and CO 2 on Mars is critical to better understand the evolution of the red planet and its atmosphere, but also the origin of the water on Earth, and possibly the origin of life. Since the beginning of the Mars2020 mission in Jezero Crater, the SuperCam instrument has analyzed more than 200 rocks of the crater CLAVÉ ET AL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.