Water quality is one of the most critical indicators of environmental pollution and it affects all of us. Water contamination can be accidental or intentional and the consequences are drastic unless the appropriate measures are adopted on the spot. This review provides a critical assessment of the applicability of various technologies for real-time water quality monitoring, focusing on those that have been reportedly tested in real-life scenarios. Specifically, the performance of sensors based on molecularly imprinted polymers is evaluated in detail, also giving insights into their principle of operation, stability in real on-site applications and mass production options. Such characteristics as sensing range and limit of detection are given for the most promising systems, that were verified outside of laboratory conditions. Then, novel trends of using microwave spectroscopy and chemical materials integration for achieving a higher sensitivity to and selectivity of pollutants in water are described.
Microwave spectroscopy has been identified as a novel and inexpensive method for the monitoring of water pollutants. Integrating microwave sensors with developed coatings is a novel strategy to make the sensing system more specific for a target contaminant. This study describes the determination of copper and zinc concentration in water in both laboratory-prepared and acquired mine water samples from two abandoned mining areas in Wales, UK. Uncoated sensors immersed in samples spiked with 1.25 mg/L concentrations of copper and zinc, using the standard addition method, were able to quantify the concentration at 0.44 GHz with a strong linear correlation (R2 = 0.99) for the reflection coefficient magnitude (|S11|). Functionalised microwave sensors with l-cysteine, chitosan and bismuth zinc cobalt oxide-based coatings have shown improvement in the sensing performance. Specifically, the linear correlation at 0.91–1.00 GHz between |S11| and a polluted water sample spiked with Cu showed a higher (R2 = 0.98), sensitivity (1.65 ΔdB/mg/L) and quality factor (135) compared with uncoated sensors (R2 = 0.88, sensitivity of 0.82 ΔdB/mg/L and Q-factor 30.7). A Lorentzian peak fitting function was applied for performing advanced multiple peak analysis and identifying the changes in the resonant frequency peaks which are related to the change in metal ion content. This novel sensor platform offers the possibility of in situ monitoring of toxic metal concentrations in mining-impacted water, and multiple peak features, such as area, full width half maximum, centre and height of the peaks, have the possibility to offer higher specificity for similar toxic metals, as between copper and zinc ions.
Metal pollution in aquatic environments has attracted global attention. Current methods are not able to monitor water quality in-situ at low-cost. This paper reports on a novel approach for detecting changes in the concentration of zinc in water using electrical and a microwave sensor method, adopting two planar sensors: one was functionalised with a screen-printed β-Bi 2 O 3 based coating, while the other was uncoated. Results show that both electrical and the microwave sensor responses were dependent on the presence and concentration of Zn in water with R 2 = 0.93-0.99. The functionalised sensor with a 60 μm thick β-Bi 2 O 3 based film offers improved performance compared with both uncoated and functionalised sensors with 40 µm thick coating for detecting the changes of Zn concentrations in water for low levels (100 and 500 µg/L). This novel sensing system could be a cost-effective alternative to the current offline methods.
The feasibility of using novel electromagnetic wave sensors for real-time monitoring of metal pollution in water was assessed. Five solutions with different concentrations of lead (0, 1, 10, 50, 100 mg/L) were measured using several sensing methods: UV-Vis spectroscopy, low frequency capacitance and resistance measurements, and two sensing systems based on microwave technology. With this last approach, two sensing devices were used: a resonant cavity and a planar sensor with gold interdigitated electrode design printed on a PTFE substrate with a protective PCB lacquer coating. Results confirmed the ability of these systems to quantify the lead concentration as changes in spectrum signal at specific frequencies of the electromagnetic spectrum. Spectra were unique, with clearly observed shifts in the resonant frequencies of the sensors when placed in direct contact with different lead solutions, demonstrating the possibility of continuous monitoring with great sensitivity, selectivity, and high spatial and temporal resolution. Consequently, determination of trace and toxic metals using microwave spectroscopy is a promising alternative to traditional grab-sampling and laboratory based analyses. On-line and continuous monitoring of real-time metal concentrations offers the potential for a more effective emergency response and the platform for better scientific understanding and remediation of contaminated mine drainage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.