Carbon Fibre Reinforced Polymer (CFRP) composites are widely used in aerospace applications that require severe quality parameters. To simplify the assembly operations and reduce the associated costs, the current trend in industry is to optimize the drilling processes. However, the machining of CFRP composites is very challenging compared with metals, and several defect types can be generated by drilling. The emerging process of orbital drilling can greatly reduce the defects associated with the traditional drilling of CFRP, but it is a more complex process requiring careful process parameters selection and it does not allow for the complete elimination of the thrust force responsible for delamination damage. As an alternative to traditional and orbital drilling, this work presents a new hole making process, where the hole is realized by a combination of drilling and peripheral milling performed using the same cutting tool following a novel tool path strategy. An original tool design principle is proposed to realize a new drill-milling tool, made of a first drilling and a subsequent milling portion. Two different tool configurations are experimentally tested to evaluate the performance of the newly-conceived combined drill-milling process. This process is quick and easy, and the experimental results show an improvement in the drilled hole quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.