Quantifying the relative importance of how local (environmental or niche‐based) and regional (dispersal‐related or spatial) processes regulate the assembly of communities has become one of the main research avenues of community ecology. It has been shown that the degree of isolation of local habitats in the landscape may substantially influence the relative role of environmental filtering and dispersal‐related processes in metacommunities. Dendritic stream networks are unique habitats in the landscape, where more isolated upstream sites have been predicted to be primarily structured by environmental variables, while more central mainstem rivers by both environmental and spatial variables (hereafter the network position hypothesis, NPH). However, the NPH has almost exclusively been tested for stream macroinvertebrates, and therefore its predictions warrant confirmation from multiple taxa. We examined the validity of the NPH for benthic diatoms, macrophytes, macroinvertebrates and fish in the Pannon Ecoregion, Hungary. Following the NPH we predicted a clear dominance of environmental over spatial variables in headwaters, and a larger effect of spatial variables in rivers compared to headwaters. We tested these predictions using variance partitioning analyses separately for the different taxa in headwater and in riverine habitats. We found large differences in the explained community variance when the impact of environmental (physical and chemical) and spatial (overland and watercourse distance) variables for various taxa was studied. In general, total explained variance was lower for the more passively dispersing plant taxa than for animal taxa with more active dispersal in both streams and rivers. However, similar to other studies, the total explained variance was low for both headwater streams and rivers. Community structure of diatoms could be best explained by both environmental and spatial variables in streams, whereas their community structure could not be explained by either variable group in rivers. The significance of environmental and spatial variables depended on the distance measure (overland versus watercourse) in the case of macrophytes. Community structure of macroinvertebrates could be explained by environmental variables in streams and by both environmental and spatial variables in rivers. Moreover, variation was explained by different predictors when macroinvertebrate taxa were divided into flying and non‐flying groups, suggesting the importance of dispersal mode in explaining community variation. Finally, community structure of fishes could be explained by both environmental and spatial variables in streams and only by environmental variables in rivers. In conclusion, we found no clear evidence of the NPH in our multi‐taxa comparison. For example, while patterns in macroinvertebrate communities seem to support the NPH, those in fish communities run counter with the predictions of the NPH. This study thus shows that different taxa may behave differently to isolation effects in stream ne...
Adult tabanid flies (horseflies and deerflies) are terrestrial and lay their eggs onto marsh plants near bodies of fresh water because the larvae develop in water or mud. To know how tabanids locate their host animals, terrestrial rendezvous sites and egg-laying places would be very useful for control measures against them, because the hematophagous females are primary/secondary vectors of some severe animal/human diseases/parasites. Thus, in choice experiments performed in the field we studied the behavior of tabanids governed by linearly polarized light. We present here evidence for positive polarotaxis, i.e., attraction to horizontally polarized light stimulating the ventral eye region, in both males and females of 27 tabanid species. The novelty of our findings is that positive polarotaxis has been described earlier only in connection with the water detection of some aquatic insects ovipositing directly into water. A further particularity of our discovery is that in the order Diptera and among blood-sucking insects the studied tabanids are the first known species possessing ventral polarization vision and definite polarization-sensitive behavior with known functions. The polarotaxis in tabanid flies makes it possible to develop new optically luring traps being more efficient than the existing ones based on the attraction of tabanids by the intensity and/or color of reflected light.
The caddis flies Hydropsyche pellucidula emerge at dusk from the river Danube and swarm around trees and bushes on the river bank. We document here that these aquatic insects can also be attracted en masse to the vertical glass surfaces of buildings on the river bank. The individuals lured to dark, vertical glass panes land, copulate, and remain on the glass for hours. Many of them are trapped by the partly open, tiltable windows. In laboratory choice experiments, we showed that ovipositing H. pellucidula are attracted to highly and horizontally polarized light stimulating their ventral eye region and, thus, have positive polarotaxis. In the field, we documented that highly polarizing vertical black glass surfaces are significantly more attractive to both female and male H. pellucidula than weakly polarizing white ones. Using video polarimetry, we measured the reflection-polarization characteristics of vertical glass surfaces of buildings where caddis flies swarmed. We propose that after its emergence from the river, H. pellucidula is attracted to buildings by their dark silhouettes and the glass-reflected, horizontally polarized light. After sunset, this attraction may be strengthened by positive phototaxis elicited by the buildings' lights. The novelty of this visual-ecological phenomenon is that the attraction of caddis flies to vertical glass surfaces has not been expected because vertical glass panes do not resemble the horizontal surface of waters from which these insects emerge and to which they must return to oviposit.
We describe a new autumnal caddisfly species Chaetopteryx bucari sp. n. from 8 localities in the Banovina region of Croatia. We also present molecular, taxonomic and ecological notes (emergence, sex ratio and seasonal dynamics) on the new species and discuss the distribution of Chaetopteryx species in general and the Chaetopteryx rugulosa group in particular. Based on Bayesian phylogenetic analysis Chaetopteryx rugulosa schmidi was separated from the clade containing the other subspecies of Chaetopteryx rugulosa. Thus the subspecies Chaetopteryx rugulosa schmidi is here raised to species level, Chaetopteryx schmidi, as it was described originally. We further present distribution data on rare species in the genus Chaetopteryx in Croatia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.