Coupled spectrophotometric assays that monitor the formation of fumarate and ammonia in the direction of aspartate deamination and aspartate in the direction of fumarate amination were used to collect initial velocity data for the aspartase reaction. Data are consistent with rapid equilibrium ordered addition of Mg2+ prior to aspartate but completely random release of Mg2+, NH4+, or fumarate. In addition to Mg2+, Mn2+ can also be used as a divalent metal with Vmax 80% and a Kaspartate 3.5-fold lower than when Mg2+ is used. Monovalent cations such as Li+, K+, Cs+, and Rb+ are competitive vs. either aspartate or NH4+ but noncompetitive vs. fumarate. A primary deuterium isotope effect of about 1 on both V and V/Kaspartate is obtained with (3R)-L-aspartate-3-d, while a primary 15N isotope effect on V/Kaspartate of 1.0239 +/- 0.0014 is obtained in the direction of aspartate deamination. A secondary isotope effect on V of 1.13 +/- 0.04 is obtained with L-aspartate-2-d. In addition, a secondary isotope effect of 0.81 +/- 0.05 on V is obtained with fumarate-d2, while a value of 1.18 +/- 0.05 on V is obtained by using (2S,3S)-L-aspartate-2,3-d2. These data are interpreted in terms of a two-step mechanism with an intermediate carbanion in which C-N bond cleavage limits the overall rate and the rate-limiting transition state is intermediate between the carbanion and fumarate.
Several naturally occurring porphyrins and porphyrins used in photodynamic therapy inhibit glutathione S-transferase isoenzymes either purified from rat liver or lung or in cytosol from normal and from cancerous (Morris 7288C hepatoma) liver. Although differences occur in the type and amount of transferases in normal and cancerous liver and in the liver of rats bearing an extrahepatic tumour, these enzymes are potential binding sites for porphyrins. Porphyrin structure is an important factor in determining the affinity of binding, as shown by the relative inhibitory effectiveness. Of the dicarboxylic porphyrins in the mixture used clinically, OO'-diacetylhaematoporphyrin and monohydroxyethylmonovinyldeuteroporphyrin are more effective inhibitors than haematoporphyrin and protoporphyrin IX. Of the naturally occurring porphyrins the order of effectiveness is protoporphyrin IX (dicarboxylic) greater than coproporphyrin (tetracarboxylic) greater than uroporphyrin (octacarboxylic) and type I greater than type III isomers of both uroporphyrin and coproporphyrin, and the synthetic tetra-meso-phenylporphinetetrasulphonate is a better inhibitor (apparent Ki = 250 nM) than coproporphyrin, which contains a comparable number of negative charges. In addition, iron-porphyrin chelates are more effective inhibitors of the transferases, with 25-fold decrease in Ki value, than the free porphyrins. These results indicate that one means whereby porphyrins accumulate in tissues is the occupation of intracellular binding sites, such as the transferases. Since porphyrins inhibit the activity of these important detoxifying enzymes, there will be metabolic consequences to the cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.