To assess potential impacts on receiving systems, associated with storm water contaminants, laboratory 10-d amphipod (Eohaustorius estuarius) survival toxicity tests were performed using intact sediment cores collected from Paleta Creek (San Diego Bay, CA, USA) on 5 occasions between 2015 and 2017. The approach included deposition-associated sediment particles collected from sediment traps placed at each of 4 locations during the 2015 to 2016 wet seasons. The bioassays demonstrated wet season toxicity, especially closest to the creek mouth, and greater mortality associated with particles deposited in the wet season compared with dry season samples. Grain size analysis of sediment trap material indicated coarser sediment at the mouth of the creek and finer sediment in the outer depositional areas. Contaminant concentrations of metals (Cd, Cu, Hg, Ni, Pb, and Zn) and organic compounds (polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], and pesticides) were quantified to assess possible causes of toxicity. Contaminant concentrations were determined in the top 5 cm of sediment and porewater (using passive samplers). Whereas metals, PAHs, and PCBs were rarely detected at sufficient concentrations to elicit a response, pyrethroid pesticides were highly correlated with amphipod toxicity. Summing individual pyrethroid constituents using a toxic unit approach suggested that toxicity to E. estuarius could be associated with pyrethroids. This unique test design allowed delineation of spatial and temporal differences in toxicity, suggesting that storm water discharge from Paleta Creek may be the source of seasonal toxicity.
Evaluating sediment recontamination due to storm water discharges is important when evaluating the long-term effectiveness of sediment remediation efforts at reducing biological impacts. The bioaccumulation of the heavy metals zinc, nickel, copper, cadmium, mercury, and lead and the metalloid arsenic in a clam (Macoma nasuta) was studied in surficial sediments before and after storm water inputs from Paleta Creek, California, USA, during wet seasons in 2015 to 2016 and 2016 to 2017. The bioaccumulation was compared with bulk sediment concentrations and porewater concentrations measured by diffusion gradient in thin film devices. Significant reductions in biota accumulation and porewater concentrations were observed in samples collected after storm seasons compared with before storm seasons despite bulk sediment concentrations remaining the same or increasing. This was apparently the result of the deposition of storm water contaminants in low bioavailable forms. The bioaccumulation of all the measured contaminants showed a positive significant correlation with porewater concentrations (p < 0.1, α = 0.1) and weak or no correlations with bulk sediment concentration. In conclusion, observed bulk sediment recontamination due to storm water should not be assumed to lead directly to greater biota accumulation without bioavailability assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.