Our data demonstrate decreased EPC levels in diabetic patients and, for the first time, show that PVD is associated with an extensively low number of EPCs. Depletion of circulating EPCs in diabetic patients may be involved in the pathogenesis of peripheral vascular complications.
Objective-Peripheral arterial disease (PAD) is a threatening complication of diabetes. As endothelial progenitor cells (EPCs) are involved in neovasculogenesis and maintenance of vascular homeostasis, their impairment may have a role in the pathogenesis of diabetic vasculopathy. This study aimed to establish whether number and function of EPCs correlate with PAD severity in type 2 diabetic patients. Methods and Results-EPCs were defined by the expression of CD34, CD133 and KDR, and quantified by flow cytometry in 127 diabetic patients with and without PAD. PAD severity has been assessed as carotid atherosclerosis and clinical stage of leg atherosclerosis obliterans. Diabetic patients with PAD displayed a significant 53% reduction in circulating EPCs versus non-PAD patients, and EPC levels were negatively correlated with the degree of carotid stenosis and the stage of leg claudication. Moreover, the clonogenic and adhesion capacity of cultured EPCs were significantly lower in diabetic patients with PAD versus patients without.
Conclusions-This
Aims/hypothesis A reduction in the number of endothelial progenitor cells (EPCs) is considered a plausible cause of increased cardiovascular risk in diabetes mellitus. The aim of this study was to test the hypothesis that weak bone marrow mobilisation is responsible for the decrease in circulating EPCs in diabetes. Materials and methods We employed a model of hindlimb ischaemia-reperfusion (I/R) injury to study mobilisation of EPCs in control and streptozotocin diabetic rats. EPCs were defined by flow cytometry as Sca-1 + and Sca-1 + c-kit + peripheral blood cells and further characterised by the expression of CD31, von Willebrand factor and fetal liver kinase-1. Capillary density was evaluated by immunofluorescent staining of vWF. We also determined plasma levels of stromal cell-derived factor (SDF-1) and vascular endothelial growth factor (VEGF) by ELISA and muscle expression of hypoxia-induced factor (HIF-1α) by Western blotting.Results In control rats, EPCs showed a mobilisation curve within 7 days, while diabetic rats were completely unable to mobilise EPCs after I/R injury. As a consequence, diabetic rats showed no compensatory increase in muscle capillary density. Defective EPC mobilisation in diabetes was associated with altered release of SDF-1 and VEGF and inability to upregulate muscle HIF-1α. Both insulin administration and premedication with granulocyte-colony stimulating factor and stem cell factor led to partial recovery in postischaemic mobilisation of EPCs in diabetic rats. Conclusions/interpretation Defective ischaemia-induced bone marrow mobilisation of EPCs impedes compensatory angiogenesis in ischaemic tissues of diabetic animals. Growth factor administration together with blood glucose control may offer a rational therapeutic strategy for diabetic ischaemic syndromes.
These data demonstrate that CD34 identifies progenitor cells linked to CV risk, showing a close negative correlation between CD34(+) cells and CV risk, as well as a synergic detrimental effect of clustered metabolic components. Progenitor cell count may be used as a surrogate marker of CV risk, whereas extensive antigenic characterization may not be useful for this purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.