Most people are generous, but not toward everyone alike: generosity usually declines with social distance between individuals, a phenomenon called social discounting. Despite the pervasiveness of social discounting, social distance between actors has been surprisingly neglected in economic theory and neuroscientific research. We used functional magnetic resonance imaging (fMRI) to study the neural basis of this process to understand the neural underpinnings of social decision making. Participants chose between selfish and generous alternatives, yielding either a large reward for the participant alone, or smaller rewards for the participant and another individual at a particular social distance. We found that generous choices engaged the temporoparietal junction (TPJ). In particular, the TPJ activity was scaled to the social-distance-dependent conflict between selfish and generous motives during prosocial choice, consistent with ideas that the TPJ promotes generosity by facilitating overcoming egoism bias. Based on functional coupling data, we propose and provide evidence for a biologically plausible neural model according to which the TPJ supports social discounting by modulating basic neural value signals in the ventromedial prefrontal cortex to incorporate social-distancedependent other-regarding preferences into an otherwise exclusively own-reward value representation.social discounting | prosocial choice | fMRI | connectivity | neuroeconomics P rosociality is one of the most fundamental qualities of all human societies. Without the ability to take other people's interests into account, human relationships would disintegrate and societies would malfunction. It has been widely demonstrated in laboratory and field experiments that individuals consider the welfare of others in their decisions and the consequences a decision has on them (1-3). Although almost all of us behave prosocially at times, it is clear that people are not equally generous to everyone alike. Rather, generosity decreases as a function of the closeness of the relationship between two individuals (2, 4). However, it is currently unknown how social distance contributes to the decision process on a neural level. In the present study, we set out to address this question.Our first aim was to investigate the systematic influence of social-distance-dependent levels of generosity on neural activation. This was investigated using a social discounting experiment adapted to the functional magnetic resonance imaging (fMRI) environment (1). We measured blood oxygen leveldependent (BOLD) responses while subjects made choices between selfish and generous rewards for themselves and for other people that varied in social distance. Choosing selfishly yielded a payoff only for the subject, whereas making a generous choice resulted in a lower payoff for the subject coupled with a reward for another person at a specific social distance (Fig. 1). Next, based on the individual choices, we reconstructed the socialdistance-dependent other-regarding utility (ORU), tha...
Learning letter-speech sound correspondences is a major step in reading acquisition and is severely impaired in children with dyslexia. Up to now, it remains largely unknown how quickly neural networks adopt specific functions during audiovisual integration of linguistic information when prereading children learn letter-speech sound correspondences. Here, we simulated the process of learning letter-speech sound correspondences in 20 prereading children (6.13-7.17 years) at varying risk for dyslexia by training artificial letter-speech sound correspondences within a single experimental session. Subsequently, we acquired simultaneously event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) scans during implicit audiovisual presentation of trained and untrained pairs. Audiovisual integration of trained pairs correlated with individual learning rates in right superior temporal, left inferior temporal, and bilateral parietal areas and with phonological awareness in left temporal areas. In correspondence, a differential left-lateralized parietooccipitotemporal ERP at 400 ms for trained pairs correlated with learning achievement and familial risk. Finally, a late (650 ms) posterior negativity indicating audiovisual congruency of trained pairs was associated with increased fMRI activation in the left occipital cortex. Taken together, a short (<30 min) letter-speech sound training initializes audiovisual integration in neural systems that are responsible for processing linguistic information in proficient readers. To conclude, the ability to learn grapheme-phoneme correspondences, the familial history of reading disability, and phonological awareness of prereading children account for the degree of audiovisual integration in a distributed brain network. Such findings on emerging linguistic audiovisual integration could allow for distinguishing between children with typical and atypical reading development. Hum Brain Mapp 38:1038-1055, 2017. © 2016 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.