Chronic stress causes dysregulations of mood and energy homeostasis, but the neurocircuitry underlying these alterations remain to be fully elucidated. Here we demonstrate that chronic restraint stress in mice results in hyperactivity of pro-opiomelanocortin neurons in the arcuate nucleus of the hypothalamus (POMC ARH neurons) associated with decreased neural activities of dopamine neurons in the ventral tegmental area (DA VTA neurons). We further revealed that POMC ARH neurons project to the VTA and provide an inhibitory tone to DA VTA neurons via both direct and indirect neurotransmissions. Finally, we show that photoinhibition of the POMC ARH →VTA circuit in mice increases body weight and food intake, and reduces depression-Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Brain glucose-sensing neurons detect glucose fluctuations and prevent severe hypoglycemia, but mechanisms mediating functions of these glucose-sensing neurons are unclear. Here we report that estrogen receptor-α (ERα)-expressing neurons in the ventrolateral subdivision of the ventromedial hypothalamic nucleus (vlVMH) can sense glucose fluctuations, being glucose-inhibited neurons (GI-ERα vlVMH) or glucose-excited neurons (GE-ERα vlVMH). Hypoglycemia activates GI-ERα vlVMH neurons via the anoctamin 4 channel, and inhibits GE-ERα vlVMH neurons through opening the ATP-sensitive potassium channel. Further, we show that GI-ERα vlVMH neurons preferentially project to the medioposterior arcuate nucleus of the hypothalamus (mpARH) and GE-ERα vlVMH neurons preferentially project to the dorsal Raphe nuclei (DRN). Activation of ERα vlVMH to mpARH circuit and inhibition of ERα vlVMH to DRN circuit both increase blood glucose. Thus, our results indicate that ERα vlVMH neurons detect glucose fluctuations and prevent severe hypoglycemia in mice.
Rickettsiae are cytosolically replicating, obligately intracellular bacteria causing human infections worldwide with potentially fatal outcomes. We previously showed that Rickettsia australis activates ASC inflammasome in macrophages. In the present study, host susceptibility of ASC inflammasome-deficient mice to R. australis was significantly greater than that of C57BL/6 (B6) controls and was accompanied by increased rickettsial loads in various organs. Impaired host control of R. australis in vivo in ASC−/− mice was associated with dramatically reduced levels of interleukin 1β (IL-1β), IL-18, and gamma interferon (IFN-γ) in sera. The intracellular concentrations of R. australis in bone marrow-derived macrophages (BMMs) of TLR4−/− and ASC−/− mice were significantly greater than those in BMMs of B6 controls, highlighting the important role of inflammasome and these molecules in controlling rickettsiae in macrophages. Compared to B6 BMMs, TLR4−/− BMMs failed to secrete a significant level of IL-1β and had reduced expression levels of pro-IL-1β in response to infection with R. australis, suggesting that rickettsiae activate ASC inflammasome via a Toll-like receptor 4 (TLR4)-dependent mechanism. Further mechanistic studies suggest that the lipopolysaccharide (LPS) purified from R. australis together with ATP stimulation led to cleavage of pro-caspase-1 and pro-IL-1β, resulting in TLR4-dependent secretion of IL-1β. Taken together, these observations indicate that activation of ASC inflammasome, most likely driven by interaction of TLR4 with rickettsial LPS, contributes to host protective immunity against R. australis. These findings provide key insights into defining the interactions of rickettsiae with the host innate immune system.
Objective Estrogen protects animals from obesity through estrogen receptor α (ERα), partially by inhibiting overeating in animals fed ad libitum. However, the effects of estrogen on feeding behavior in hungry animals remain unclear. In this study, we examined the roles of 17β-estradiol (E2) and ERα in the regulation of feeding in hungry female animals and explored the underlying mechanisms. Methods Wild-type female mice with surgical depletion of endogenous estrogens were used to examine the effects of E2 supplementation on acute refeeding behavior after starvation. ERα-C451A mutant mice deficient in membrane-bound ERα activity and ERα-AF2 0 mutant mice lacking ERα transcriptional activity were used to further examine mechanisms underlying acute feeding triggered by either fasting or central glucopenia (induced by intracerebroventricular injections of 2-deoxy- D -glucose). We also used electrophysiology to explore the impact of these ERα mutations on the neural activities of ERα neurons in the hypothalamus. Results In the wild-type female mice, ovariectomy reduced fasting-induced refeeding, which was restored by E2 supplementation. The ERα-C451A mutation, but not the ERα-AF2 0 mutation, attenuated acute feeding induced by either fasting or central glucopenia. The ERα-C451A mutation consistently impaired the neural responses of hypothalamic ERα neurons to hypoglycemia. Conclusion In addition to previous evidence that estrogen reduces deviations in energy balance by inhibiting eating at a satiated state, our findings demonstrate the unexpected role of E2 that promotes eating in hungry mice, also contributing to the stability of energy homeostasis. This latter effect specifically requires membrane-bound ERα activity.
Background Brain estrogen receptor-α (ERα) is essential for estrogenic regulation of energy homeostasis and reproduction. We previously showed that ERα expressed by pro-opiomelanocortin (POMC) neurons mediates estrogen’s effects on food intake, body weight, negative regulation of hypothalamic–pituitary–gonadal axis (HPG axis) and fertility. Results and conclusions We report here that global deletion of a key downstream receptor for POMC peptide, the melanocortin 4 receptor (MC4R), did not affect normal negative feedback regulation of estrogen on the HPG axis, estrous cyclicity and female fertility. Furthermore, loss of the MC4R did not influence estrogenic regulation on food intake and body weight. These results indicate that the MC4R is not required for estrogen’s effects on metabolic and reproductive functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.