Chronic stress causes dysregulations of mood and energy homeostasis, but the neurocircuitry underlying these alterations remain to be fully elucidated. Here we demonstrate that chronic restraint stress in mice results in hyperactivity of pro-opiomelanocortin neurons in the arcuate nucleus of the hypothalamus (POMC ARH neurons) associated with decreased neural activities of dopamine neurons in the ventral tegmental area (DA VTA neurons). We further revealed that POMC ARH neurons project to the VTA and provide an inhibitory tone to DA VTA neurons via both direct and indirect neurotransmissions. Finally, we show that photoinhibition of the POMC ARH →VTA circuit in mice increases body weight and food intake, and reduces depression-Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Brain glucose-sensing neurons detect glucose fluctuations and prevent severe hypoglycemia, but mechanisms mediating functions of these glucose-sensing neurons are unclear. Here we report that estrogen receptor-α (ERα)-expressing neurons in the ventrolateral subdivision of the ventromedial hypothalamic nucleus (vlVMH) can sense glucose fluctuations, being glucose-inhibited neurons (GI-ERα vlVMH) or glucose-excited neurons (GE-ERα vlVMH). Hypoglycemia activates GI-ERα vlVMH neurons via the anoctamin 4 channel, and inhibits GE-ERα vlVMH neurons through opening the ATP-sensitive potassium channel. Further, we show that GI-ERα vlVMH neurons preferentially project to the medioposterior arcuate nucleus of the hypothalamus (mpARH) and GE-ERα vlVMH neurons preferentially project to the dorsal Raphe nuclei (DRN). Activation of ERα vlVMH to mpARH circuit and inhibition of ERα vlVMH to DRN circuit both increase blood glucose. Thus, our results indicate that ERα vlVMH neurons detect glucose fluctuations and prevent severe hypoglycemia in mice.
Fat and lean pig breeds show obvious differences in meat quality characteristics including the fatty acid composition of muscle. However, the molecular mechanism underlying these phenotypes differences remains unknown. This study compared meat quality traits between Lantang (a Chinese indigenous breed) and Landrace (a typical lean breed). The Lantang pigs showed higher L* values and intramuscular fat content, lower pH45min, pH24h and shear force in longissimus dorsi (LD) muscle than Landrace (P < 0.05). Fatty acid analysis demonstrated the lower monounsaturated fatty acids (MUFA) and higher polyunsaturated fatty acids (PUFA) percentage in Lantang LD than that in Landrace LD (P < 0.05). To further identify candidate genes for fatty acid composition, the transcriptome of LD muscle from the two breeds were measured by microarrays. There were 586 transcripts differentially expressed, of which 267 transcripts were highly expressed in Lantang pigs. After the validation by real-time quantitative PCR, 13 genes were determined as candidate genes for fatty acid composition of muscle, including Stearoyl-CoA desaturase (SCD). Then, a SCD over-expression plasmid was transfected into C2C12 cells to reveal the effect of SCD on the fatty acid composition in vitro. The results showed that SCD over-expression significantly increased PUFA proportion, while reduced that of saturated fatty acids (SFA) in C2C12 cells (P < 0.05). In summary, this study compared the differences of fatty acid composition and transcriptome in two breeds differing in meat quality, and further identified the novel role of SCD in the regulation of PUFA deposition.
Backgroud: This study aimed to determine the effects of early antibiotic intervention (EAI) on subsequent blood parameters, apparent nutrient digestibility, and fecal fermentation profile in pigs with different dietary crude protein (CP) levels. Eighteen litters of piglets (total 212) were randomly allocated to 2 groups and were fed a creep feed diet with or without in-feed antibiotics (olaquindox, oxytetracycline calcium and kitasamycin) from postnatal d 7 to d 42. On d 42, the piglets within the control or antibiotic group were mixed, respectively, and then further randomly assigned to a normal- ( Results: EAI increased (P < 0.05) albumin and glucose concentrations in low-CP diet on d 77, and increased (P < 0.05) urea concentration in normal-CP diet. On d 185, EAI increased (P < 0.05) globulin concentration in normal-CP diets, but decreased glucose concentration. For nutrient digestibility, EAI increased (P < 0.05) digestibility of CP on d 77. For fecal microbiota, the EAI as well as low-CP diet decreased (P < 0.05) E. coli count on d 77. For fecal metabolites, on d 77, EAI decreased (P < 0.05) total amines concentration but increased skatole concentration in low-CP diet. On d 185, the EAI increased (P < 0.05) putrescine and total amines concentrations in low-CP diets but reduced (P < 0.05) in the normal-CP diets. The low-CP diet decreased the concentrations of these compounds. Conclusions: Collectively, these results indicate that EAI has short-term effects on the blood parameters and fecal microbial fermentation profile. The effects of EAI varied between CP levels, which was characterized by the significant alteration of glucose and putrescine concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.