International audienceThe PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars and people. Twelve teams entered the challenge. In this chapter we provide details of the datasets, algorithms used by the teams, evaluation criteria, and results achieved
Many approaches to object recognition are founded on probability theory, and can be broadly characterized as either generative or discriminative according to whether or not the distribution of the image features is modelled. Generative and discriminative methods have very different characteristics, as well as complementary strengths and weaknesses. In this paper we introduce new generative and discriminative models for object detection and classification based on weakly labelled training data. We use these models to illustrate the relative merits of the two approaches in the context of a data set of widely varying images of nonrigid objects (animals). Our results support the assertion that neither approach alone will be sufficient for large scale object recognition, and we discuss techniques for combining them.3. Generative models can readily handle compositionality (e.g. faces with glasses and/or hats, and/or moustaches) whereas standard discriminative models need to see all combinations of possibilities during training.By contrast, discriminative models generally offer the following advantages:
In this paper, a real-time railway fastener detection system using a high-speed laser range finder camera is presented. First, an extensive analysis of various methods based on pixel-wise and histogram similarities are conducted on a specific railway route. Then, a fusing stage is introduced which combines least correlated approaches also considering the performance upgrade after fusing. Then, the resulting method is tested on a larger database collected from a different railway route. After observing repeated successes, the method is implemented on NI LabVIEW and run real-time with a high-speed 3-D camera placed under a railway carriage designed for railway quality inspection.Index Terms-High-speed laser range finder, railway fastener detection, railway inspection
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.