Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.
Seasonal germination timing of Arabidopsis thaliana strongly influences overall life history expression and is the target of intense natural selection. This seasonal germination timing depends strongly on the interaction between genetics and seasonal environments both before and after seed dispersal. DELAY OF GERMINATION 1 (DOG1) is the first gene that has been identified to be associated with natural variation in primary dormancy in A. thaliana. Here, we report interaccession variation in DOG1 expression and document that DOG1 expression is associated with seed-maturation temperature effects on germination; DOG1 expression increased when seeds were matured at low temperature, and this increased expression was associated with increased dormancy of those seeds. Variation in DOG1 expression suggests a geographical structure such that southern accessions, which are more dormant, tend to initiate DOG1 expression earlier during seed maturation and achieved higher expression levels at the end of silique development than did northern accessions. Although elimination of the synthesis of phytohormone abscisic acid (ABA) results in the elimination of maternal temperature effects on dormancy, DOG1 expression predicted dormancy better than expression of genes involved in ABA metabolism.
Epigenetic variation is being integrated into our understanding of adaptation, yet we lack models on how epigenetic mutations affect evolution that includes de novo genetic change. We model the effects of epigenetic mutations on the dynamics and endpoints of adaptive walks-a process where a series of beneficial mutations move a population towards a fitness optimum. We use an individual-based model of an asexual population, where mutational effects are drawn from Fisher's geometric model. We find cases where epigenetic mutations speed adaptation or result in populations with higher fitness. However, we also find cases where they slow adaptation or result in populations with lower fitness. The effect of epigenetic mutations on adaptive walks depends crucially on their stability and fitness effects relative to genetic mutations, with small-effect epigenetic mutations generally speeding adaptation, and epigenetic mutations with the same fitness effects as genetic mutations slowing adaptation. Our work reveals a complex relationship between epigenetic mutations and natural selection and highlights the need for empirical data.
Local adaptation provides an opportunity to study the genetic basis of adaptation and investigate the allelic architecture of adaptive genes. We study DELAY OF GERMINATION 1 (DOG1), a gene controlling natural variation in seed dormancy in Arabidopsis thaliana and investigate evolution of dormancy in 41 populations distributed in four regions separated by natural barriers. Using The genetic basis of local adaptation is one of the fundamental questions in evolutionary biology. Local adaptation occurs if selection is strong enough relative to gene flow and favors different phenotypes in different populations (Kawecki and Ebert 2004).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.