A disposable
electrochemical test strip for the quantitative point-of-care
(POC) determination of acetaminophen (paracetamol) in plasma and finger-prick
whole blood was fabricated. The industrially scalable dry transfer
process of single-walled carbon nanotubes (SWCNTs) and screen printing
of silver were combined to produce integrated electrochemical test
strips. Nafion coating stabilized the potential of the Ag reference
electrode and enabled the selective detection in spiked plasma as
well as in whole blood samples. The test strips were able to detect
acetaminophen in small 40 μL samples with a detection limit
of 0.8 μM and a wide linear range from 1 μM to 2 mM, well
within the required clinical range. After a simple 1:1 dilution of
plasma and whole blood, a quantitative detection with good recoveries
of 79% in plasma and 74% in whole blood was achieved. These results
strongly indicate that these electrodes can be used directly to determine
the unbound acetaminophen fraction without the need for any additional
steps. The developed test strip shows promise as a rapid and simple
POC quantitative acetaminophen assay.
Oxycodone is a strong opioid
frequently used as an analgesic. Although proven efficacious in the
management of moderate to severe acute pain and cancer pain, use of
oxycodone imposes a risk of adverse effects such as addiction, overdose,
and death. Fast and accurate determination of oxycodone blood concentration
would enable personalized dosing and monitoring of the analgesic as
well as quick diagnostics of possible overdose in emergency care.
However, in addition to the parent drug, several metabolites are always
present in the blood after a dose of oxycodone, and to date, there
is no electrochemical data available on any of these metabolites.
In this paper, a single-walled carbon nanotube (SWCNT) electrode and
a Nafion-coated SWCNT electrode were used, for the first time, to
study the electrochemical behavior of oxycodone and its two main metabolites,
noroxycodone and oxymorphone. Both electrode types could selectively
detect oxycodone in the presence of noroxycodone and oxymorphone.
However, we have previously shown that addition of a Nafion coating
on top of the SWCNT electrode is essential for direct measurements
in complex biological matrices. Thus, the Nafion/SWCNT electrode was
further characterized and used for measuring clinically relevant concentrations
of oxycodone in buffer solution. The limit of detection for oxycodone
with the Nafion/SWCNT sensor was 85 nM, and the linear range was 0.5–10
μM in buffer solution. This study shows that the fabricated
Nafion/SWCNT sensor has potential to be applied in clinical concentration
measurements.
We study the saturable absorption properties of single-walled carbon nanotubes (SWCNTs) with a large diameter of 2.2 nm and the corresponding exciton resonance at a wavelength of 2.4 µm. At resonant excitation, a large modulation depth of approximately 30 % and a small saturation fluence of a few tens of µJ/cm 2 are evaluated. The temporal response is characterized by an instantaneous rise and a subpicosecond recovery. We also utilize the SWCNTs to realize sub-50 fs, self-start mode locking in a Cr:ZnS laser, revealing that the film thickness is an important parameter that affects the possible pulse energy and duration. The results prove that semiconductor SWCNTs with tailored diameters exceeding 2 nm are useful for passive mode locking in the mid-infrared range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.