A noninvasive and selective therapy, photodynamic therapy (PDT) is widely researched in clinical fields; however, the lower efficiency of PDT can induce unexpected side effects. Mitochondria are extensively researched as target sites to maximize PDT effects because they play crucial roles in metabolism and can be used as cancer markers due to their high transmembrane potential. Here, a mitochondria targeting photodynamic therapeutic agent (MitDt) is developed. This photosensitizer is synthesized from heptamethine cyanine dyes, which are conjugated or modified as follows. The heptamethine meso‐position is conjugated with a triphenylphosphonium derivative for mitochondrial targeting, the N‐alkyl side chain is modified for regulation of charge balance and solubility, and the indolenine groups are brominated to enhance reactive oxygen species generation (ROS) after laser irradiation. The synthesized MitDt increases the cancer uptake efficiency due to the lipo‐cationic properties of the triphenylphosphonium, and the PDT effects of MitDt are amplified after laser irradiation because mitochondria are susceptible to ROS, the response to which triggers an apoptotic anticancer effect. Consequently, these hypotheses are demonstrated by in vitro and in vivo studies, and the results indicate strong potential for use of MitDts as efficient single‐molecule‐based PDT agents for cancer treatment.
Deformable organic light-emitting diode (OLED) based optoelectronic devices hold promise for various wearable applications including biomedical systems and displays, but current OLED technologies require high voltage and lack the power needed for wearable photodynamic therapy (PDT) applications and wearable displays. This paper presents a parallel-stacked OLED (PAOLED) with high power, more than 100 mW/cm 2 , at low voltage (<8 V). The current dispersion ratio can be tuned by optimizing the structure of the individual OLEDs stacked to create the PAOLED, allowing control of the PAOLED's wavelength shapes, current efficiency, and power. In this study, a fabricated PAOLED operated reliably for 100 h at a high power of 35 mW/cm 2 . Confirming its potential application to PDT, the measured singlet oxygen generation ratio of the PAOLED was found to be 3.8 times higher than the reference OLED. The high-power PAOLED achieved a 24% reduction in melanoma cancer cell viability after a short (0.5 h) irradiation. In addition, a white light PAOLED with color tuning was realized through OLED color combination, and a high brightness of over 30 000 cd/m 2 was realized, below 8.5 V. In conclusion, the PAOLED was demonstrated to be suitable for a variety of low-voltage, high-power wearable optoelectronic applications.
Perturbation of potassium homeostasis can affect various cell functions and lead to the onset of programmed cell death. Although ionophores have been intensively used as an ion homeostasis disturber, the mechanisms of cell death are unclear and the bioapplicability is limited. In this study, helical polypeptide‐based potassium ionophores are developed to induce endoplasmic reticulum (ER) stress‐mediated apoptosis. The polypeptide‐based potassium ionophores disturb ion homeostasis and then induce prolonged ER stress in the cells. The ER stress results in oxidative environments that accelerate the activation of mitochondria‐dependent apoptosis. Moreover, ER stress‐mediated apoptosis is triggered in a tumor‐bearing mouse model that suppresses tumor proliferation. This study provides the first evidence showing that helical polypeptide‐based potassium ionophores trigger ER stress‐mediated apoptosis by perturbation of potassium homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.