Abstract. In this paper, we propose an efficient measurement of the eye blinking for drowsy driver detection system that is one of the driver safety systems for the intelligent vehicle. However, during the real driving in the daytime, driver's face is exposed to various illuminations. It makes too difficult to monitor driver's eye blinking. Therefore, we propose efficient formation of the cascaded form of Support Vector Machines (SVM) as eye verification to boost the accuracy of eye detection. Furthermore, for an efficient measurement of eye blinking, we newly define decision function that is based on the measure of eyelid movement and the weight generated by the eye classifier. In the experiments, we can show the reliable performance for our own test data acquired during a real driving in the various illumination conditions. Furthermore, through our proposed method, we use detected eye blinking for Drowsy Driver Detection System.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.