Hydraulic manipulators have been widely used in many different fields due to their high force/torque to inertia ratio. The increased speed of hydraulic manipulators requires solutions to problems ranging from mechanical design to the need to determine a robot model suitable for model-based control. As a solution, this paper presents the integration of SolidWorks with Simscape for designing and controlling hydraulic manipulators. The integration provides a platform for the rapid control prototyping of a hydraulic robot without the need to build actual prototypes. The mechanical drawings of a manipulator are first created using Solidworks and are then imported into Simscape, where the manipulator is represented by connected block diagrams based on the principle of physical modeling. Simulation examples for a 3D manipulator made by KNR SYSTEM INC are verified to show the effectiveness of the presented platform.
This paper presents a preliminary study on the pressure sensing characteristics of smart nano composites made of MWCNT (multi-walled carbon nanotube) to develop a novel pressure sensor. We fabricated the composite pressure sensor by using a solution casting process. Made of carbon smart nano composites, the sensor works by means of piezoresistivity under pressure. We built a signal processing system similar to a conventional strain gage system. The sensor voltage outputs during the experiment for the pressure sensor and the resistance changes of the MWCNT as well as the epoxy based on the smart nano composite under static pressure were fairly stable and showed quite consistent responses under lab level tests. We confirmed that the response time characteristics of MWCNT nano composites with epoxy were faster than the MWCNT/EPDM sensor under static loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.