Worldwide, the anticonvulsant drug carbamazepine (CBZ) is the most frequently identified pharmaceutical residue detected in rivers. Reported chronic effects of CBZ in non-target freshwater organisms, particularly fish, include oxidative stress and damage to liver tissues. Studies on CBZ effects in fish are mostly limited to zebrafish and rainbow trout studies. Furthermore, there are only a few chronic CBZ studies using near environmental concentrations. In this study, we provide data on subacute effects of CBZ exposure (28 days) to common carp (Cyprinus carpio), employing a set of biochemical markers of damage and exposure. CBZ was found to induce a significant change in the hepatic antioxidant status of fish subjected to 5 µg/L. Moreover, with increasing concentrations, enzymatic and non-enzymatic biomarkers of oxidative defence (catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), DNA strand breaks)), toxicant biotransformation (ethoxyresorufin-o-demethylase (EROD), glutathione-S-transferase (GST)), and organ and tissue damage (lactate dehydrogenase (LDH), cetylcholinesterase (AChE)) were altered. The AChE, LDH, and lipid peroxidation (LPO) results indicate the occurrence of apoptotic process activation and tissue damage after 28 days of exposure to CBZ. These findings suggest significant adverse effects of CBZ exposure to common carp at concentrations often found in surface waters.
Aflatoxin B1 (AFB1) is a potent mycotoxin and natural carcinogen. The primary producers of AFB1 are Aspergillus flavus and A. parasiticus. Sterigmatocystin (STC), another mycotoxin, shares its biosynthetic pathway with aflatoxins. While there are abundant data on the biological effects of AFB1, STC is not well characterised. According to published data, AFB1 is more harmful to biological systems than STC. It has been suggested that STC is about one-tenth as potent a mutagen as AFB1 as measured by the Ames test. In this research, the biological effects of S9 rat liver homogenate-activated and non-activated STC and AFB1 were compared using two different biomonitoring systems, SOS-Chromotest and a recently developed microinjection zebrafish embryo method. When comparing the treatments, activated STC caused the highest mortality and number of DNA strand breaks across all injected volumes. Based on the E. coli SOS-Chromotest, the two toxins exerted the same genotoxicities. Moreover, according to the newly developed zebrafish microinjection method, STC appeared more toxic than AFB1. The scarce information correlating AFB1 and STC toxicity suggests that AFB1 is a more potent genotoxin than STC. Our findings contradict this assumption and illustrate the need for more complex biomonitoring systems for mycotoxin risk assessment.
Fumonisins are frequent food contaminants. The high exposure to fumonisins can cause harmful effects in humans and animals. Fumonisin B1 (FB1) is the most typical member of this group; however, the occurrence of several other derivatives has been reported. Acylated metabolites of FB1 have also been described as possible food contaminants, and the very limited data available suggest their significantly higher toxicity compared to FB1. Furthermore, the physicochemical and toxicokinetic properties (e.g., albumin binding) of acyl-FB1 derivatives may show large differences compared to the parent mycotoxin. Therefore, we tested the interactions of FB1, N-palmitoyl-FB1 (N-pal-FB1), 5-O-palmitoyl-FB1 (5-O-pal-FB1), and fumonisin B4 (FB4) with human serum albumin as well as the toxic effects of these mycotoxins on zebrafish embryos were examined. Based on our results, the most important observations and conclusions are the following: (1) FB1 and FB4 bind to albumin with low affinity, while palmitoyl-FB1 derivatives form highly stable complexes with the protein. (2) N-pal-FB1 and 5-O-pal-FB1 likely occupy more high-affinity binding sites on albumin. (3) Among the mycotoxins tested, N-pal-FB1 showed the most toxic effects on zebrafish, followed by 5-O-pal-FB1, FB4, and FB1. (4) Our study provides the first in vivo toxicity data regarding N-pal-FB1, 5-O-pal-FB1, and FB4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.