Although Indonesia’s electrification ratio reached 99.2% in 2020, it has shown stagnating electrification since 2018. This is because most of the remaining areas that need to be electrified are remote and have unique characteristics that hamper implementation of microgrids for providing energy access. Furthermore, not only the deployment but also the long-term sustainability of microgrids is crucial for ensuring continuity of energy access. This paper aims to investigate the scaling and sustainability challenges of remote microgrid development in Indonesia by analyzing microgrids in the Maluku and North Maluku provinces. This study is a two-part publication; the first part focuses on identifying challenges in Indonesia’s remote microgrid development, while the second part focuses on potential technology solutions. In the first part, an assessment of energy access within a multi-tier framework was conducted, which was then analyzed using a multi-dimensional (institutional, social, technical, economic, environmental, and policy) approach adapted from the literature. The framework was expanded by mapping the challenges onto specific phases of the microgrid development, which is intended to be helpful for the parties involved in specific phases. It is shown that the challenges related to unclear land status, lack of social engagement, preliminary survey, technical and practical knowledge, and O&M procedures—especially for remote microgrids with renewable energy sources—are the most prominent issues. Additionally, issues caused by electrical events and environmental conditions such as relatively humid and high-temperatures, and uncontrolled vegetation, rodents, insects, and lizards are often found. Furthermore, a high-level technological outlook to address some of these issues is presented.
This paper is the companion paper of Remote Microgrids for Energy Access in Indonesia “Part I: scaling and sustainability challenges and a technology outlook”. This part II investigates the issues of photovoltaic (PV) systems with respect to the planning, design, and operation, and maintenance phases in microgrids in Indonesia. The technology outlooks are also included as PV has an important role in providing electricity in the underdeveloped, isolated, and border areas. The data in this paper are from PV microgrids located in Maluku and North Maluku, which are two provinces where there is barely any grid connection available and thus very dependent on remote microgrids. The data are obtained from interviews with Perusahaan Listrik Negara (PLN) and NZMATES, which are an Indonesian utility company and a program for supporting role for the PV systems in Maluku funded by New Zealand respectively. Common issues with respect to reliability and sustainability are identified based on the provided data. Advanced technologies to increase reliability and sustainability are also presented in this paper as a technology outlook. Among these solutions are online monitoring systems, PV and battery lifetime estimation, load forecasting strategies, and PV inverters technology.
Future office buildings are expected to be integrated with energy intensive, inherently DC components such as photovoltaic panels (PV), electric vehicles (EV), LED lighting, and battery storage. This paper conceptualizes the interconnection of these components through a 750 V DC nanogrid as against a conventional three-phase 400 V AC system. The factors influencing the performance of a DC-based nanogrid are identified and a comparative analysis with respect to a conventional AC nanogrid is presented in terms of efficiency, stability, and protection. It is proved how the minimization of grid energy exchange through power management is a vital system design choice. Secondly, the trade-off between stability, protection, and cost for sizing of the DC buffer capacitors is explored. The transient system response to different fault conditions for both AC and DC nanogrid is investigated. Finally the differences between the two systems in terms of various safety aspects are highlighted.
Abstract-The paper provides a comparison of four PV-battery architectures with dc and ac backbones, in terms of autarky, energy efficiency, battery size and reduction of annual electricity cost. The comparison is conducted based on the residential load and irradiation data from the Netherlands. The effect of different PV generation is also analyzed by comparing the results with irradiation data from Costa Rica. The results show that the ac coupled architecture gives the best performance.
Operation of microgrids requires intensive monitoring and control between components through a communication network. A harsh signal environment in a microgrid might disrupt the communication and lead to component failures. Filters are required to protect the critical equipment and ensure seamless communication while filters could also influence communication signals. This paper analyzes the filter effectiveness in microgrid applications, which is illustrated by a mismatch between source and load impedances.The observed filter includes components' parasitics and imperfect inductor coupling as its nonideal characteristics. Due to the converter's switching frequency, a mismatch between source and load impedances, and unintentional inductance in the ground wire, reduced attenuation could be expected for a filter that is implemented in a microgrid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.