Contamination of the soil and water environment with harmful substances can be associated with many activities carried out on the railway. The problem is particularly relevant to liquid fuel loading and refueling facilities as well as to increased traffic at railway junctions. Studies were conducted in the area of railway junction Zduńska Wola Karsznice in central Poland (Łódź Voivodeship). Soil samples were collected from specific research points: from the inter-railway (A), 5 m from the main track (B), from the embankment—10 m from the main track (C), and from the side track (D), at the depth of 0–5 cm (1) and 20 cm (2). The following analyses were made: granulometric composition, pH in H2O, and percent content of carbonates (CaCO3). PHEs were determined in the fractions: 0.25 ≤ 0.5 mm, 0.1 ≤ 0.25 mm, and 0.05 ≤ 0.1 mm: Pb, Cd, Cr, Co, Cu, Ni, Zn, Sr by inductively coupled plasma mass spectrometry technique (ICP-MS/TOF OPTIMass 9500). The objectives of the study were (1) to assess PHEs (potentially harmful elements) contamination of the topsoil level of railway area, (2) to determine the correlation between the concentration of PHEs and the size of the fraction, and (3) to identify the areas (places) where the highest concentrations of PHEs were recorded. Based on the studied parameters, significant differentiation in soil properties of the areas in Zduńska Wola Karsznice was found. The analyses carried out showed that the accumulation of potentially harmful elements was as follows: Cu > Zn > Sr > Pb > Ni > Cr > Co > Cd. The average concentrations of Cu, Zn, Sr, Pb, Ni, Cr, Co and Cd were 216.0; 152.1; 97.8; 64.6; 15.2; 14.4; 3.1 and 0.2 mg·kg−1 d.w., respectively. These contaminations occur in the topsoil layer of the railway embankment, which suggests a railway transport origin. The highest concentrations of PHEs were recorded in samples collected from close to the rails (inter-railway, side track), and in the embankment (10 m from the track) in the very fine sand fraction (0.05 ≤ 0.1 mm). The high accumulation index of copper, cadmium and lead in the surface layer of soil indicate their anthropogenic origin. The results presented in the paper can be used in local planning and spatial development of this area, taking into account all future decisions about ensuring environmental protection, including groundwater and soils.
Przemiany nanocząsteczek metali w środowisku wodnym i zagrożenie dla bezpieczeństwa środowiskowegoABSTRACT Purpose: The aim of the article is to provide information on the transformation and interaction of metal nanoparticles in the aquatic environment. Introduction: Nanotechnology is one of the leading fields of science, combining knowledge in the fields of physics, chemistry, biology, medicine, computer science and engineering. Nanoparticles of heavy metals, due to their structure and size, exhibit new important biological, chemical and physical properties, which are impossible to achieve at the level of macro-and microscopic structures. Nanoparticles of metal and metal oxides (NPMOs) are promising substances with a wide spectrum of applications in many areas. The increasing number of products based on (NPMOs) leads to the emission of an increasing amount of these substances in various forms to the environment. The presence of NPMOs in industrial and municipal sewage affects their further migration to surface waters and soils, which in turn also leads to their introduction into the food chain. Therefore, understanding the properties and behaviour of these substances in aqueous solutions is becoming a priority in the field of safety, environmental protection and human health. Methodology: The article was prepared on the basis of a review of the literature on the subject. Conclusions: Nanoparticles of metals and metal oxides are widely used in various areas of human life, which means that they constitute an increasingly important group of compounds released to the environment, including to surface waters. Nanoparticles of metal and metal oxides play an important role in the aquatic environment, affecting numerous biophysicochemical processes. However, it should be noted that many of the processes that NPMOs undergo are determined by the size of the grains and surfaces of nanoparticles, and the metals that form the basis of these nanosubstances. Processes such as agglomeration, sedimentation, sorption on the surface of organisms, oxidation and catalysis are conditioned by numerous parameters such as the presence of other substances, the acidification/alkalization of the aquatic environment, and the presence of plant and animal organisms. In order to assess the actual or potential threat to the environment or human exposure, it is necessary to explore the mechanisms and kinetics of processes occurring in the aquatic environment with respect to nanoparticles of metals and metal oxides. Knowledge of NPMOs processes in the aquatic environment is necessary to create or enhance environmental migration models. This is an open access article under the CC BY-SA 4.0 license (https://creativecommons.org/licenses/by-sa/4.0/). ABSTRAKTCel: Celem artykułu jest przedstawienie informacji na temat przemian i interakcji nanocząstek metali zachodzących w środowisku wodnym. Wprowadzenie: Nanotechnologia to jedna z wiodących dziedzin nauki, łącząca wiedzę z obszaru fizyki, chemii, biologii, medycyny, informatyki i inżynierii. Nanocząs...
The quality of bottom sediment is important for the condition of aquatic environments. High levels of potentially harmful components in sediments negatively affect the quality of surface water environments. Lake bottom sediments are commonly used to control the quality of the environment in terms of both heavy metals and harmful organic compounds. This paper presents new data on the compositions of bottom sediments from Sołtmany Lake, located in the Masurian Lake District (Poland). The aim of this study was to determine the physicochemical properties of bottom sediments and to assess their quality based on geochemical and ecotoxicological criteria. The field study was conducted in July 2021. Thirty sediment samples were collected for analysis from six study sites located in the upper central and lower part of the reservoir. Contamination of the bottom sediments with trace metals was determined on the basis of the geoaccumulation index (Igeo), while an ecological risk assessment was carried out on the basis of calculated values of TEC (Threshold Effect Concentration) and PEC (Probable Effect Concentration) indices. The study shows that the concentration of trace metals in sediments was characterised by slight variation and that the maximum values did not exceed: 1.1 mg·kg−1 for Cd, 8.7 mg·kg−1 for Cr, 10.9 mg·kg−1 for Cu, 7.7 mg·kg−1 for Ni, 12.9 mg·kg−1 for Pb and 52.3 mg·kg−1 for Zn. The analyses further showed that the concentration of trace elements in the sediment surface layer increased in the following order: Zn > Pb > Cu > Ni > Cr > Cd. The maximum pH value of H2O was 7.1, while that of KCl was 7.0. The maximum values of Corg, Ntot, P2O5, K2O and Mg were, respectively: 6.1 g·kg−1, 1.4 g·kg−1, 40.2 mg·100 g−1, 31.2 mg·100 g−1 and 35.1 mg·100 g−1. The assessment of the degree of lake pollution is essential for the conservation of biodiversity and the organisation of environmental management activities.
This study presents the influence of the cement and lime industry on the physical and chemical properties of arable soils. In spite of using modern forms of environmental protection against dust emissions, this type of industry causes unfavourable phenomenon of excessive alkalisation of soil. This process is relatively rare in Poland. However, in the Świętokrzyskie Province, it has been responsible for the largest transformation of soils in recent years. The analysis included soil samples taken from five profiles located in the vicinity of Dyckerhoff Polska Sp. z o.o. Nowiny Cement Plant. The study results obtained in 2019 were compared with those obtained in 1978 and 2005. The most attention was paid to soil pH; CaCO3 content; organic carbon and nitrogen content; concentrations of available components such as P2O5, K2O and Mg; and the saturation level of sorption complex with alkaline cations. It was found that long-term imission of pollutants caused significant changes in the basic soil properties, which remain in soils despite the evident decrease in the cement-lime dust emission. These include high pH values, excessive CaCO3 content, high soil saturation with alkaline cations and decreases in total carbon content, which were especially visible in soil humus horizons.
Sediment accumulation is a process that is typical of all types of water reservoirs. The rate and pattern of such accumulation are related to processes taking place in catchments that produce the sediments and to those within reservoirs that determine the percentage of the inflowing load that is trapped and where it is deposited. To keep reservoirs in working order requires desilting and managing of such bottom sediments once they are removed. The choice of strategy for sediment management depends on chemical and physical properties which result from both natural and anthropogenic processes. To varying degrees, these sediments may be contaminated with chemical compounds, especially trace metals. Therefore, research is needed in order to assess the quality of sediments, which will allow to opt for the proper management strategy. Based on an analysis of the available literature, the possibility of using sediments from reservoirs has been determined, using quality criteria and in accordance with applicable law and regulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.