Intact forest landscapes have the greatest conservation value but are shrinking due to industrial logging and fragmentation.
ABSTRACT. Protection of large natural forest landscapes is a highly important task to help fulfill different international strategic initiatives to protect forest biodiversity, to reduce carbon emissions from deforestation and forest degradation, and to stimulate sustainable forest management practices. This paper introduces a new approach for mapping large intact forest landscapes (IFL), defined as an unbroken expanse of natural ecosystems within areas of current forest extent, without signs of significant human activity, and having an area of at least 500 km 2 . We have created a global IFL map using existing fine-scale maps and a global coverage of high spatial resolution satellite imagery. We estimate the global area of IFL within the current extent of forest ecosystems (forest zone) to be 13.1 million km 2 or 23.5% of the forest zone. The vast majority of IFL are found in two biomes: Dense Tropical and Subtropical Forests (45.3%) and Boreal Forests (43.8%). The lowest proportion of IFL is found in Temperate Broadleaf and Mixed Forests. The IFL exist in 66 of the 149 countries that together make up the forest zone. Three of them-Canada, Russia, and Brazil-contain 63.8% of the total IFL area. Of the world's IFL area, 18.9% has some form of protection, but only 9.7% is strictly protected, i.e., belongs to IUCN protected areas categories I-III. The world IFL map presented here is intended to underpin the development of a general strategy for nature conservation at the global and regional scales. It also defines a baseline for monitoring deforestation and forest degradation that is well suited for use with operational and cost-effective satellite data. All project results and IFL maps are available on a dedicated web site (http://www.intactforests.org).
Primary forest extent, loss and degradation within the Democratic Republic of the Congo (DRC) were quantified from 2000 to 2010 by combining directly mapped forest cover extent and loss data (CARPE) with indirectly mapped forest degradation data (intact forest landscapes, IFL). Landsat data were used to derive both map inputs, and data from the GLAS (Geoscience Laser Altimetry System) sensor were employed to validate the discrimination of primary intact and primary degraded forests. In the year 2000, primary humid tropical forests occupied 104 455 kha of the country, with 61% of these forests classified as intact. From 2000 to 2010, 1.02% of primary forest cover was lost due to clearing, and almost 2% of intact primary forests were degraded due to alteration and fragmentation. While primary forest clearing increased by a factor of two between 2000-2005 and 2005-2010, the degradation of intact forests slightly decreased. Fragmentation and selective logging were the leading causes of intact forest degradation, accounting for 91% of IFL area change. The 10 year forest degradation rate within designated logging permit areas was 3.8 times higher compared to other primary forest areas. Within protected areas the forest degradation rate was 3.7 times lower than in other primary forest areas. Forest degradation rates were high in the vicinity of major urban areas. Given the observed forest degradation rates, we infer that the degradation of intact forests could increase up to two-fold over the next decade.
Forest cover dynamics (defined as tree canopy cover change without regard to forest land use) within the Russian European North have been analyzed from 1990 to 2005 using a combination of results from two Landsat-based forest cover monitoring projects: 1990-2000 and 2000-2005. Results of the forest cover dynamics analysis highlighted several trends in forest cover change since the breakdown of the Soviet planned economy. While total logging area decreased from the 1990-2000 to the 2000-2005 interval, logging and other forms of anthropogenically-induced clearing increased within the Central and Western parts of the region. The most populated regions of European Russia featured the highest rates of net forest cover loss. Our results also revealed intensive gross forest cover loss due to forest felling close to the Russian-Finland border. The annual burned forest area almost doubled between the two time intervals. The 2000-2005 gross forest cover gain results suggest that tree encroachment on abandoned agriculture land is a wide-spread process over the region. The analysis demonstrates the value of regional-scale Landsat-based forest cover and change quantification. Our results supplemented official data by providing independently derived spatial information that could be used for assessing on-going trends and serve as a baseline for future forest cover monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.