Key Points Question Is cognitive decline associated with amyloid-β or tau tangles accumulation? Findings In this cohort study that included 60 normal older adults with repeated positron emission tomography measures, the rate of tau accumulation in the inferior temporal neocortex was associated with the rate of cognitive decline. Amyloid accumulation was associated with subsequent tau accumulation, and this sequence of successive amyloid and tau changes in neocortex was found to mediate the association of initial amyloid with final cognition, measured 7 years later. Meaning Amyloid positron emission tomography is useful to detect early Alzheimer pathology; repeated tau positron emission tomography is useful to track disease progression.
(2) and London mutation(s) (3) alter APP processing, causing increased production of the A peptide of 42 amino acids (4), hypothesized to be pivotal in AD pathology (1, 5). Early onset familial AD caused by mutations in the presenilin genes supports this hypothesis, because they increase production of A (42) peptide (6, 7) due to the gain of an unknown function (8). The extensive cell biological definition of the metabolic effects of the different mutations in APP in vitro requires matching analysis of their physiological impact in vivo. Transgenic mice with wild type and different mutant forms of APP have been generated and the original, most wanted end point, i.e. AD-like amyloid plaques in mouse brain, was obtained (9, 10), accompanied by cognitive deficits (11) and by hyperphosphorylation of protein tau (12). In other transgenic mouse strains overexpression of APP caused behavioral, synaptotrophic, and neurodegenerative effects, accelerated senescence, and premature death, in the absence of amyloid deposits (13-16). Intracellular expression of the A peptide yielded mice with extensive neuronal loss but no amyloidosis (17). Overexpression of the C-terminal domain of APP caused neuronal degeneration (18), whereas in another model, pre-amyloid deposits, hippocampal cell loss, and cognitive deficits were documented (19).We have generated additional transgenic mouse strains, expressing human APP, either wild type or the London or Swedish clinical mutations, from the neuron-specific mouse thy-1 gene promoter. Their phenotype was analyzed by biochemical, histochemical, behavioral, electrophysiological, and pharmacological methods. Measurements of different APP metabolites in brain demonstrated that increased A(42) levels correlated with the formation of amyloid plaques in the brain of old APP/London transgenic mice. The plaques were extensively characterized immunohistochemically and displayed many aspects typically observed in the brain of AD patients. As opposed to plaques that developed only after at least 12 months of age, other deficits were observed from 3 months onwards and included cognitive impairment, decreased long term potentiation, differential glutamatergic responses, aggression, and neophobia, among others. These signs were largely independent of the actual isoform or mutant of APP that was expressed, were not correlated with a single APP metabolite, and are dissociated in time from plaque formation. These mice will be good models to study both early and late, neuropathological, and clinical aspects related to Alzheimer's disease. EXPERIMENTAL PROCEDURESGeneration of Transgenic Mice-cDNA coding for human wild type APP (695 isoform), the Swedish (K670N,M671L) mutant (770 isoform), and the London (V642I) mutant (695 isoform) were cloned in the pTSC vector in the mouse thy-1 gene (16). The purified, linearized minigenes were microinjected into prenuclear embryos from superovulated FVB/N females.Antibodies-Rabbit antisera B11/4 and B12/4, generated against a *
Genome-wide association studies (GWAS) have identified a region upstream the BIN1 gene as the most important genetic susceptibility locus in Alzheimer's disease (AD) after APOE. We report that BIN1 transcript levels were increased in AD brains and identified a novel 3 bp insertion allele ∼28 kb upstream of BIN1, which increased (i) transcriptional activity in vitro, (ii) BIN1 expression levels in human brain and (iii) AD risk in three independent case-control cohorts (Meta-analysed Odds ratio of 1.20 (1.14–1.26) (P=3.8 × 10−11)). Interestingly, decreased expression of the Drosophila BIN1 ortholog Amph suppressed Tau-mediated neurotoxicity in three different assays. Accordingly, Tau and BIN1 colocalized and interacted in human neuroblastoma cells and in mouse brain. Finally, the 3 bp insertion was associated with Tau but not Amyloid loads in AD brains. We propose that BIN1 mediates AD risk by modulating Tau pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.