Several serious diseases are caused by biofilm-associated Staphylococcus aureus. Colonial variants occur in biofilms of other bacterial species, and S. aureus variants are frequently isolated from biofilm-associated infections. Thus, we studied the generation of variants with altered expression of virulence factors in S. aureus biofilms. We observed that the number of variants found in biofilms, as measured by hemolytic activity, varied for different strains. Further study of hemolytic activity and signaling by the accessory gene regulator (Agr) quorum-sensing system in one S. aureus strain revealed three primary biofilm subpopulations: nonhemolytic (Agr deficient), hemolytic (Agr positive), and hyperhemolytic (also Agr positive). The nonhemolytic variant became the numerically dominant subpopulation in the biofilm. The nonhemolytic variant phenotype was stable and heritable, indicating a genetic perturbation, whereas the hyperhemolytic phenotype was unstable, suggesting a phase variation. Transcription profiling revealed that expression of the agr locus and many extracellular virulence factors was repressed in the nonhemolytic variant. Expression of the agr-activating gene, sarU, was also repressed in the nonhemolytic variant, suggesting one potential regulatory pathway responsible for the Agr-deficient phenotype. We suggest that the development of these variants in biofilms may have important clinical implications.
Hint1 is a homodimeric protein and member of the ubiquitous HIT superfamily. Hint1 catalyzes the hydrolysis of purine phosphoramidates and lysyl-adenylate generated by lysyl-tRNA synthetase (LysRS). To determine the importance of homodimerization on the biological and catalytic activity of Hint1, the dimer interface of human Hint1 (hHint1) was destabilized by replacement of Val 97 of hHint1 with Asp, Glu, or Arg. The mutants were shown to exist as monomers in solution by a combination of size exclusion chromatograph, static light scattering, and chemically induced dimerization studies. Circular dichroism studies revealed little difference between the stability of the V97D, V97E, and wild-type hHint1. Relative to wild-type and the V97E mutant, however, significant perturbation of the V97D mutant structure was observed. hHint1 was shown to prefer 3-indolepropionic acyl-adenylate (AIPA) over tryptamine adenosine phosphoramidate monoester (TpAd). Wild-type hHint1 was found to be 277-and 1000-fold more efficient (k cat /K m values) than the V97E and V97D mutants, respectively. Adenylation of wildtype, V97D, and V97E hHint1 by human LysRS was shown to correlate with the mutant k cat /K m values using 3-indolepropionic acyl-adenylate as a substrate, but not tryptamine adenosine phosphoramidate monoester. Significant perturbations of the active site residues were not detected by molecular dynamics simulations of the hHint1s. Taken together, these results demonstrate that for hHint1; 1) the efficiency (k cat / K m ) of acylated AMP hydrolysis, but not maximal catalytic turnover (k cat ), is dependent on homodimerization and 2) the hydrolysis of lysyl-AMP generated by LysRS is not dependent on homodimerization if the monomer structure is similar to the wild-type structure.Histidine triad nucleotide-binding proteins (Hint) 2 are members of the histidine triad (HIT) protein superfamily of nucleotidyltransferases and hydrolyases (1). HIT proteins are named for the conserved nucleotide binding motif containing the sequence His-X-His-X-His-XX, in which X is a hydrophobic amino acid. The HIT proteins have been classified into three subfamilies according to their enzymatic function, sequence composition, and structural similarity; the Hint branch, the fragile histidine triad (Fhit) branch, and the galactose-1-phosphate uridyltransferase (GalT) branch (1).The Hint branch is the most ancient and can be found in Archaea, Bacteria, and Eukaryotae. Hints are homodimeric proteins that have been found to be purine phosphoramidases (2-5). Recently, we have demonstrated that lysyl-adenylate (lysyl-AMP) generated by bacterial and human lysyl-tRNA synthetases (LysRS) are also substrates for the respective bacterial and human Hints (6). Escherichia coli hinT knock-out mutants exhibited salt-dependent cell growth, whereas Hint1 knock-out mice have an increased susceptibility to 7, 12-dimethylbenz[a]anthracene (DMBA)-induced ovarian and mammary tumors by the carcinogen DMBA and increased incidence of spontaneous tumors (2,7,8). In addition,...
We report here the creation of a modular, plasmid-based protein expression system utilizing elements of the native Rhodobacter puf promoter in a BioBrick(TM)-based vector system with DsRed encoding a red fluorescent reporter protein. A suite of truncations of the puf promoter were made to assess the influence of different portions of this promoter on expression of heterologous proteins. The 3' end of puf was found to be particularly important for increasing expression, with transformants accumulating significant quantities of DsRed under both aerobic and anaerobic growth conditions. Expression levels of this reporter protein in Rhodobacter sphaeroides were comparable to those achieved in Escherichia coli using the strong, constitutive P lac promoter, thus demonstrating the robustness of the engineered system. Furthermore, we demonstrate the ability to tune the designed expression system by modulating cellular DsRed levels based upon the promoter segment utilized and oxygenation conditions. Last, we show that the new expression system is able to drive expression of a membrane protein, proteorhodopsin, and that membrane purifications from R. sphaeroides yielded significant quantities of proteorhodopsin. This toolset lays the groundwork for the engineering of multi-step pathways, including recalcitrant membrane proteins, in R. sphaeroides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.