This work is aimed at creating a modified invasive technique for assessing the liver’s functional reserves. A study of the degree of hepatodepression is carried out by measuring the plasma elimination of indocyanine green using the method of optical densitometry. This paper presents test results for an aqueous solution and an albumin solution, as well as the results of measurements of plasma elimination of indocyanine green for patients with liver disease. Perfecting the proposed method will make an important scientific contribution to modern diagnostic medicine. Diagnosing the stages in the progression of the disease and its developing complications can make it possible to rapidly correct the patient’s treatment algorithm, achieving positive outcomes in medical practice.
The work is dedicated to determination of physical parameters of micro- and nanoparticles by static light scattering method. We present static light scattering device and theory to determine sizes of particles in suspensions. We analyze calculated distributions of scattering intensity for particles of different sizes and compare it with experimental data, received for spherical particles of different sizes. We also suggest theory to calculate form factor of scattering intensity for micro- and nanoparticles of different shapes. We also demonstrated that Rayleigh scattering theory is better to be applied for small particles investigation.
A pressing health problem, both in clinical and socio-economic terms, is the increase in the number of patients with liver damage caused by viral diseases (hepatitis), cancer, toxicological damage, or metabolic disorders. Liver function assessment is a complex task, for which various existing diagnostic methods are used. Unfortunately, they all have several limitations which frequently make prompt and accurate diagnosis impossible. The high level of disability and mortality caused by liver diseases makes the development of new liver diagnostic methods very urgent. In this paper, we describe a new joint methodology for studying liver function based on optical densitometry and dynamic light scattering. This will help to diagnose and predict the dynamics of liver function during treatment with greater efficiency, due to including in consideration the individual characteristics of the cardiovascular system and tissue metabolism. In this paper, we present a laboratory model of a combined sensor for optical densitometry and dynamic light scattering. We also developed special software for controlling the sensor and processing the recorded data. Modeling experiments and physical medical studies were carried out to adjust and calibrate the sensor and software. We also assessed the sensor resolution when registering the concentration of dye in the human body and the minimum measured flow rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.