In this work, vibration analysis of rolling element bearings (REBs) defects is studied. The REBs are the most widely used mechanical parts in rotating machinery under high load and high rotational speeds. When the defect in a rolling element comes into contact with another element surface, an impact force is generated which is resulting in an impulsive response of the bearing. A defect at any element of the REB transmits to all other elements such as outer race, inner race, ball and, train cage of the bearing. The defect in rolling elements may lead to serious catastrophic consequences resulting in costly downtime. For this purpose, the vibration analysis technique which is a reliable and accurately detecting defect in the bearing elements is used. The vibration data captured and used for determination and validation is composed from four different defects states of the REB -outer raceway defect, inner raceway defect, ball defect, and combination of the bearing elements defect-and one representing normal state of the bearing for four different running speeds with two load levels. The results obtained from the experiments have illustrated and explained.
In this study, Taguchi method has been applied to evaluate the effect of cryogenically treated tools in turning of Hastelloy C22 super alloy on surface roughness. The optimum parameters (cryogenic treatment, cutting speed, and feed rate) of turning were determined by using the Taguchi experimental design method. In Taguchi method, L9 orthogonal array has been used to determine the signal noise (S/N) ratio. Analysis of ANOVA was carried out to identify the significant factors affecting surface roughness. The statistical analysis indicated that feed rate, with a contribution percentage as high as 87.64 %, had the most dominant effect on machining performance, followed by the cryo-treated tools treatment and cutting speed, respectively. The confirmation tests indicated that it is possible to improve surface roughness significantly by using the Taguchi method. Surface roughness was improved by 28.3 and 72.3 % by shallow (CT1) cryogenic treatment and deep cryogenic treatment (CT2) applied on cementite carbide tools (UT). It found that wear resistance of tungsten carbide insert was increased by shallow and deep cryogenic treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.