Prostate cancer is one of the leading causes of death from cancer among men in the United States. Currently, high-resolution magnetic resonance imaging (MRI) has been shown to have higher accuracy than trans-rectal ultrasound (TRUS) when used to ascertain the presence of prostate cancer. As MRI can provide both morphological and functional images for a tissue of interest, some researchers are exploring the uses of multispectral MRI to guide prostate biopsies and radiation therapy. However, success with prostate cancer localization based on current imaging methods has been limited due to overlap in feature space of benign and malignant tissues using any one MRI method and the interobserver variability. In this paper, we present a new unsupervised segmentation method for prostate cancer detection, using fuzzy Markov random fields (fuzzy MRFs) for the segmentation of multispectral MR prostate images. Typically, both hard and fuzzy MRF models have two groups of parameters to be estimated: the MRF parameters and class parameters for each pixel in the image. To date, these two parameters have been treated separately, and estimated in an alternating fashion. In this paper, we develop a new method to estimate the parameters defining the Markovian distribution of the measured data, while performing the data clustering simultaneously. We perform computer simulations on synthetic test images and multispectral MR prostate datasets to demonstrate the efficacy and efficiency of the proposed method and also provide a comparison with some of the commonly used methods.
The automated methods presented here can help diagnose and detect prostate cancer, and improve segmentation results. For that purpose, multispectral MRI provides better information about cancer and normal regions in the prostate when compared to methods that use single MRI techniques; thus, the different MRI measurements provide complementary information in the automated methods. Moreover, the use of supervised algorithms in such automated methods remain a good alternative to the use of unsupervised algorithms.
Prostate cancer is a leading cause of cancer death for men in the United States. Fortunately, the survival rate for early diagnosed patients is relatively high. Therefore, in vivo imaging plays an important role for the detection and treatment of the disease. Accurate prostate cancer localization with noninvasive imaging can be used to guide biopsy, radiotherapy, and surgery as well as to monitor disease progression. Magnetic resonance imaging (MRI) performed with an endorectal coil provides higher prostate cancer localization accuracy, when compared to transrectal ultrasound (TRUS). However, in general, a single type of MRI is not sufficient for reliable tumor localization. As an alternative, multispectral MRI, i.e., the use of multiple MRI-derived datasets, has emerged as a promising noninvasive imaging technique for the localization of prostate cancer; however almost all studies are with human readers. There is a significant inter and intraobserver variability for human readers, and it is substantially difficult for humans to analyze the large dataset of multispectral MRI. To solve these problems, this study presents an automated localization method using cost-sensitive support vector machines (SVMs) and shows that this method results in improved localization accuracy than classical SVM. Additionally, we develop a new segmentation method by combining conditional random fields (CRF) with a cost-sensitive framework and show that our method further improves cost-sensitive SVM results by incorporating spatial information. We test SVM, cost-sensitive SVM, and the proposed cost-sensitive CRF on multispectral MRI datasets acquired from 21 biopsy-confirmed cancer patients. Our results show that multispectral MRI helps to increase the accuracy of prostate cancer localization when compared to single MR images; and that using advanced methods such as cost-sensitive SVM as well as the proposed cost-sensitive CRF can boost the performance significantly when compared to SVM.
Abstract-Registration is a fundamental step in image processing systems where there is a need to match two or more images. Applications include motion detection, target recognition, video processing, and medical imaging. Although a vast number of publications have appeared on image registration, performance analysis is usually performed visually, and little attention has been given to statistical performance bounds. Such bounds can be useful in evaluating image registration techniques, determining parameter regions where accurate registration is possible, and choosing features to be used for the registration. In this paper, Cramér-Rao bounds on a wide variety of geometric deformation models, including translation, rotation, shearing, rigid, more general affine and nonlinear transformations, are derived. For some of the cases, closed-form expressions are given for the maximum-likelihood (ML) estimates, as well as their variances, as space permits. The bounds are also extended to unknown original objects. Numerical examples illustrating the analytical performance bounds are presented.
In this paper, we propose a novel and efficient semisupervised technique for automated prostate cancer localization using multiparametric magnetic resonance imaging (MRI). This method can be used in guiding biopsy, surgery, and therapy. We systematically present a new segmentation technique by developing a multiparametric graph based random walker (RW) algorithm with automated seed initialization to perform prostate cancer segmentation using multiparametric MRI. RW algorithm has proved to be accurate and fast in segmentation applications; however it requires a set of (user provided) seed points in order to perform segmentation. In this study, we first developed a novel RW method, which can be used with multiparametric MR images and then devised alternative methods that can determine seed points in an automated manner using discriminative classifiers such as support vector machines (SVM). Proposed RW method with automated seed initialization is able to produce improved segmentation results by assigning more weights to the images with more discriminative power.We applied the proposed method to a multiparametric dataset obtained from biopsy confirmed prostate cancer patients. Proposed method produces a sensitivity/ specificity rate of 0.76 and 0.86, respectively. Both visual, quantitative as well as statistical results are presented to show the significant performance improvements. Fisher sign test is used to demonstrate the statistical significance of our results by achieving p-values less than 0.05. This method outperforms available RW and SVM based methods by achieving a high specificity rate while not reducing sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.