, and ERDF. Z.D. was supported by a fellowship from Fondation Française pour la Recherche contre le My elome et les Gammapathies monoclonales (F.F.R.M.G.). Disclosure of potential conflict of interest: The authors declare that they have no relevant conflicts of interest.
B cells ensure humoral immune responses due to the production of Ag-specific memory B cells and Ab-secreting plasma cells. In secondary lymphoid organs, Ag-driven B cell activation induces terminal maturation and Ig isotype class switch (class switch recombination [CSR]). CSR creates a virtually unique locus in every B cell clone by intrachromosomal recombination between two switch (S) regions upstream of each C region gene. Amount and structural features of CSR junctions reveal valuable information about the CSR mechanism, and analysis of CSR junctions is useful in basic and clinical research studies of B cell functions. To provide an automated tool able to analyze large data sets of CSR junction sequences produced by high-throughput sequencing (HTS), we designed CSReport, a software program dedicated to support analysis of CSR recombination junctions sequenced with a HTS-based protocol (Ion Torrent technology). CSReport was assessed using simulated data sets of CSR junctions and then used for analysis of Sμ-Sα and Sμ-Sγ1 junctions from CH12F3 cells and primary murine B cells, respectively. CSReport identifies junction segment breakpoints on reference sequences and junction structure (blunt-ended junctions or junctions with insertions or microhomology). Besides the ability to analyze unprecedentedly large libraries of junction sequences, CSReport will provide a unified framework for CSR junction studies. Our results show that CSReport is an accurate tool for analysis of sequences from our HTS-based protocol for CSR junctions, thereby facilitating and accelerating their study.
B-cell activation yields abundant cell death in parallel to clonal amplification and remodeling of immunoglobulin (Ig) genes by activation-induced deaminase (AID). AID promotes affinity maturation of Ig variable regions and class switch recombination (CSR) in mature B lymphocytes. In the IgH locus, these processes are under control of the 3’ regulatory region (3’RR) super-enhancer, a region demonstrated in the mouse to be both transcribed and itself targeted by AID-mediated recombination. Alternatively to CSR, IgH deletions joining Sμ to “like-switch” DNA repeats that flank the 3’ super-enhancer can thus accomplish so-called “locus suicide recombination” (LSR) in mouse B-cells. Using an optimized LSR-seq high throughput method, we now show that AID-mediated LSR is evolutionarily conserved and also actively occurs in humans, providing an activation-induced cell death pathway in multiple conditions of B-cell activation. LSR either focuses on the functional IgH allele or is bi-allelic, and its signature is mainly detected when LSR is ongoing while it vanishes from fully differentiated plasma cells or from “resting” blood memory B-cells. Highly diversified breakpoints are distributed either within the upstream (3’RR1) or downstream (3’RR2) copies of the IgH 3’ super-enhancer and all conditions activating CSR in vitro also seem to trigger LSR although TLR ligation appeared the most efficient. Molecular analysis of breakpoints and junctions confirms that LSR is AID-dependent and reveals junctional sequences somehow similar to CSR junctions but with increased usage of microhomologies.
Activation-induced deaminase (AID) is the major actor of immunoglobulin (Ig) gene diversification in germinal center B-cells. From its first description, it was considered as mandatory for class switch recombination (CSR), and this discovery initiated a long quest for all of the AID-interacting factors controlling its activity. The mechanisms focusing AID-mediated DNA lesions to given target sequences remain incompletely understood with regards the detailed characterization of optimal substrates in which cytidine deamination will lead to double strand breaks (DSBs) and chromosomal cleavage. In an effort to reconsider whether such CSR breaks absolutely require AID, we herein provide evidence, based on deep-sequencing approaches, showing that this dogma is not absolute in both human and mouse B lymphocytes. In activated B-cells from either AID-deficient mice or human AID-deficient patients, we report an intrinsic ability of the IgH locus to undergo “on-target” cleavage and subsequent synapsis of broken regions in conditions able to yield low-level CSR. DNA breaks occur in such conditions within the same repetitive S regions usually targeted by AID, but their repair follows a specific pathway with increased usage of microhomology-mediated repair. These data further demonstrate the role of AID machinery as not initiating de novo chromosomal cleavage but rather catalyzing a process which spontaneously initiates at low levels in an appropriately conformed IgH locus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.