A method is presented to automatically track and segment pelvic organs on dynamic magnetic resonance imaging (MRI) followed by multiple-object trajectory classification to improve understanding of pelvic organ prolapse (POP). POP is a major health problem in women where pelvic floor organs fall from their normal position and bulge into the vagina. Dynamic MRI is presently used to analyze the organs' movements, providing complementary support for clinical examination. However, there is currently no automated or quantitative approach to measure the movement of the pelvic organs and their correlation with the severity of prolapse. In the proposed method, organs are first tracked and segmented using particle filters and [Formula: see text]-means clustering with prior information. Then, the trajectories of the pelvic organs are modeled using a coupled switched hidden Markov model to classify the severity of POP. Results demonstrate that the presented method can automatically track and segment pelvic organs with a Dice similarity index above 78% and Hausdorff distance of [Formula: see text] for 94 tested cases while demonstrating correlation between organ movement and POP. This work aims to enable automatic tracking and analysis of multiple deformable structures from images to improve understanding of medical disorders.
Pelvic organ prolapse is a major health problem in women where pelvic floor organs (bladder, uterus, small bowel, and rectum) fall from their normal position and bulge into the vagina. Dynamic Magnetic Resonance Imaging (DMRI) is presently used to analyze the organs' movements from rest to maximum strain providing complementary support for diagnosis. However, there is currently no automated or quantitative approach to measure the movement of the pelvic organs and their correlation with the severity of prolapse. In this paper, a two-stage method is presented to automatically track and segment pelvic organs on DMRI followed by a multiple-object trajectory classification method to improve the diagnosis of pelvic organ prolapse. Organs are first tracked using particle filters and K-means clustering with prior information. Then, they are segmented using the convex hull of the cluster of particles. Finally, the trajectories of the pelvic organs are modeled using a new Coupled Switched Hidden Markov Model (CSHMM) to classify the severity of pelvic organ prolapse. The tracking and segmentation results are validated using Dice Similarity Index (DSI) whereas the classification results are compared with two manual clinical measurements. Results demonstrate that the presented method is able to automatically track and segment pelvic organs with a DSI above 82% for 26 out of 46 cases and DSI above 75% for all 46 tested cases. The accuracy of the trajectory classification model is also better than current manual measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.