Abstract-The technique of scale multiplication is analyzed in the framework of Canny edge detection. A scale multiplication function is defined as the product of the responses of the detection filter at two scales. Edge maps are constructed as the local maxima by thresholding the scale multiplication results. The detection and localization criteria of the scale multiplication are derived. At a small loss in the detection criterion, the localization criterion can be much improved by scale multiplication. The product of the two criteria for scale multiplication is greater than that for a single scale, which leads to better edge detection performance. Experimental results are presented.
Abstract-Edge-preserving denoising is of great interest in medical image processing. This paper presents a wavelet-based multiscale products thresholding scheme for noise suppression of magnetic resonance images. A Canny edge detector-like dyadic wavelet transform is employed. This results in the significant features in images evolving with high magnitude across wavelet scales, while noise decays rapidly. To exploit the wavelet interscale dependencies we multiply the adjacent wavelet subbands to enhance edge structures while weakening noise. In the multiscale products, edges can be effectively distinguished from noise. Thereafter, an adaptive threshold is calculated and imposed on the products, instead of on the wavelet coefficients, to identify important features. Experiments show that the proposed scheme better suppresses noise and preserves edges than other wavelet-thresholding denoising methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.