The growing maturity of integrated photonic technology makes it possible to build increasingly large and complex photonic circuits on the surface of a chip. Today, most of these circuits are designed for a specific application. However, the increase in complexity creates an opportunity for a generation of photonic circuits that can be programmed in software for a wide variety of functions through a mesh of on-chip waveguides, tunable beam couplers and optical phase shifters. Here we discuss the state of this emerging technology, not just the recent developments in photonic building blocks and circuit architectures, but also the higher levels in the technology stack for the electronic control and programming strategies. We also cover the various possible applications in linear matrix operations, quantum information processing and microwave photonics and examine how these generic chips can accelerate the development of future photonic circuits by providing a higher-level platform for prototyping novel optical functionalities without the need for custom chip fabrication.
A class of nano-scale wavelength-selective optical filters is proposed where the core of a metal-insulator-metal square ring is replaced with a split-ring core (SRC). The proposed resonator supports split-ring-resonator-like (SRR-like) resonant modes that are characteristics of the structure. These resonant modes are highly adjustable, via the gap size of the split-ring core, over a range of hundreds of nanometers. The proposed resonator can also incorporate tunable materials localized in the gap of the SRC or placed throughout the resonating path. By varying the refractive index (1 to 2) of the material in the gap of the SRC, first and second SRR-like modes can be tuned over ~200 and 300 nm, respectively. A circuit model based on transmission-line theory is proposed for the structure and used to derive the resonance conditions of the split-ring-resonator-like modes; the model compares favorably to the numerical results. The proposed resonator has the potential to be utilized effectively in integrated nano-scale optical switches and tunable filters.
A nanoplasmonic optical filtering technique based on a complementary split-ring resonator structure is proposed. The basic and modal properties of the square-nanoring are studied using the group theory. Degeneracy and non-degeneracy of the possible TM odd- and even-modes are characterized based on the symmetry elements of the ring structure. Distinctively, the proposed technique allows selecting and exciting the proper plasmonic modes of the nanoring in the side-coupled arrangement. It is found that the non-integer modes can be excited due to the presence of a metallic nano-wall. These modes are highly sensitive to the nano-wall dimensions, in contrast to the regular integer modes. Moreover, the transmission-line theory is used to derive the resonance condition of the modes. The results show the optical transmission spectrum of the investigated filter can be efficiently modified and tuned either by manipulation of the position or by variation of the width of the employed nano-wall inside the ring. The numerical results support the theoretical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.