Municipal solid waste (MSW) management presents an important challenge for all countries. In order to exploit them as a source of energy, a knowledge of their calorific value is essential. In fact, it can be experimentally measured by an oxygen bomb calorimeter. This process is, however, expensive. In this light, the purpose of this paper was to develop empirical models for the prediction of MSW higher heating value (HHV) from ultimate analysis. Two methods were used: multiple regression analysis and genetic programming formalism. Both techniques gave good results. Genetic programming, however, provides more accuracy compared to published works in terms of a great correlation coefficient (CC) and a low root mean square error (RMSE).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.