Biosynthesis of metal-oxide nanoparticles using plant extracts has been attracting increasing interest. In this study, we focused on the green synthesis of zinc oxide (ZnO) nanomaterials using zinc acetate as a precursor and mulberry fruit extract as a green reducing agent and determined the antioxidant activity. Powder X-ray diffraction and UV-Vis and Fourier Transform Infra-Red (FT-IR) spectroscopy were used for structure elucidation and to determine the crystallinity of the synthesized product. The morphology of samples was determined using Scanning Electron Microscopy (SEM). Our results indicated the successful synthesis of ZnO nanoparticles. SEM findings revealed the nanoparticles to be spherical; they were found to agglomerate and showed a narrow space between particles, which could be indicative of improved activity. The antioxidant activity of ZnO nanoparticles was determined using a 2,2-Diphenyl-1-Picryl-Hydrazyl (DPPH) free-radical scavenging assay taking into account time and concentration. Our results indicated that ZnO nanoparticles with mulberry fruit extract that were synthesized using green chemistry could effectively scavenge the free DPPH radicals, thereby confirming their superior antioxidant activity.
In this study, solid olive wastes were suggested as adsorbents for olive mill wastewater (OMWW) clean-up. These solid olive wastes underwent thermal treatment by twostep process: carbonization at 300 • C and 400 • C, then physical activation at 800 • C and 1000 • C. Characterizations were determined by FTIR, TGA/DTA, and N 2 Adsorption-Desorption techniques. The efficiency of these new bio-adsorbents was verified on OMWW. Adsorption kinetics experiments were realized at room temperature and diluted OMWW (1/100 v/v). Evaluation of obtained activated carbons (ash, iodine value, and moisture) shows a good activity and stability in weight according to the thermogravimetric analysis. Moreover, the textural results of BET surface area showed a high area for activated carbons prepared from olive stones at 300 • C/800 • C (S BET = 208 ± 0.3 m 2 /g) and olive flesh at 400 • C/1000 • C (S BET = 77 ± 0.8 m 2 /g). The adsorption rates of OMWW were 91% after 120 min and 95.3% after 60 min contact time at pH = 2.0, respectively. At the end, the pH increased to neutral value. Thus, these bio-adsorbents from solid waste of olive industry can be efficient adsorbents for their liquid effluent clean-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.