Your article is protected by copyright and all rights are held exclusively by Springer-Verlag GmbH Germany, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
DIBR-3D technology has evolved over the past few years with the demands of consumers increasing in recent times for future free-view 3D videos on their home televisions. The main issue in 3D technology is the lack of 3D content available to watch using the traditional TV systems. Although, some sophisticated devices like stereoscopic cameras have been used to fill the gap between the 3D content demand and 3D content supply. But the content generated through these sophisticated devices can not be displayed on the traditional TV systems, so there needs to be some mechanism which is inline with the traditional TV. Furthermore, the huge collection of existing 2D content should be converted to 3D using depth image-based rendering techniques. This conversion technique can highly contribute in overcoming the shortage problem of the 3D content. This paper presents a novel approach for converting 2D degraded image for DIBR 3D-TV view. This degraded or noisy/blur image is enhanced through image dehazing and Directional Filter Bank (DFB). This enhancement is necessary because of the occlusion effect or hole filling problem that occurs due to imperfect depth map. The enhanced image is then segmented into the foreground image and the background image. After the segmentation, the depth map is generated using image profiles. Moreover, Stereoscopic images are finally produced using the DIBR procedure which is based on the 2D input image and the corresponding depth map. We have verified the results of the proposed approach by comparing the results with the existing state-of-the-art techniques.
Abstract-Companies are investing more in analytics to obtain a competitive edge in the market and decision makers are required better identification among their data to be able to interpret complex patterns more easily. Alluring thousands of new customers is worthless if an equal number is leaving. Business Intelligence (BI) systems are unable to find hidden churn patterns for the huge customer base. In this paper, a decision support system has been proposed, which can predict the churning behaviour of a customer efficiently. We have proposed a procedure to develop an analytical system using data mining as well as machine learning techniques C5, CHAID, QUEST, and ANN for the churn analysis and prediction for the telecommunication industry. Prediction performance can be significantly improved by using a large volume and several features from both Business Support Systems (BSS) and Operations Support Systems (OSS). Extensive experiments are performed; marginal increases in predictive performance can be seen by using a larger volume and multiple attributes from both Telco BSS and OSS data. From the results, it is observed that using a combination of techniques can help to figure out a better and precise churn prediction model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.