Iodic acid (HIO3) is known to form aerosol particles in coastal marine regions, but predicted nucleation and growth rates are lacking. Using the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we find that the nucleation rates of HIO3 particles are rapid, even exceeding sulfuric acid–ammonia rates under similar conditions. We also find that ion-induced nucleation involves IO3− and the sequential addition of HIO3 and that it proceeds at the kinetic limit below +10°C. In contrast, neutral nucleation involves the repeated sequential addition of iodous acid (HIO2) followed by HIO3, showing that HIO2 plays a key stabilizing role. Freshly formed particles are composed almost entirely of HIO3, which drives rapid particle growth at the kinetic limit. Our measurements indicate that iodine oxoacid particle formation can compete with sulfuric acid in pristine regions of the atmosphere.
Abstract. We investigated smoke emissions from fires in savanna, forest, and agricultural ecosystems by airborne sampling of plumes close to prescribed burns and incidental fires in southern Africa. Aerosol samples were collected on glass fiber filters and on stacked filter units, consisting of a Nuclepore prefilter for particles larger than -• 1-2 gm and a Teflon second filter stage for the submicron fraction. The samples were analyzed for soluble ionic components, organic carbon, and black carbon. Onboard the research aircraft, particle number and volume distributions as a function of size were determined with a laser-optical particle counter and the black carbon content of the aerosol with an aethalometer. We determined the emission ratios (relative to CO2 and CO) and emission factors (relative to the amount of biomass burnt) for the various aerosol constituents. The smoke aerosols were rich in organic and black carbon, the latter representing 10-30% of the aerosol mass. K + and NH• were the dominant cationic species in the smoke of most fires, while C1-and so•-were the most important anions. The aerosols were unusually rich in CI-, probably due to the high C1 content of the semiarid vegetation. Comparison of the element budget of the fuel before and after the fires shows that the fraction of the elements released during combustion is highly variable between elements. In the case of the halogen elements, almost the entire amount released during the fire is present in the aerosol phase, while in the case of C, N, and S, only a small proportion ends up as particulate matter. This suggests that the latter elements are present predominantly as gaseous species in the fresh fire plumes studied here.
Environmental context. One of the most important classes of water-soluble organic compounds in continental fine and tropical biomass burning aerosol is humic-like substances (HULIS), which contain components with strong polar, acidic and chromophoric properties. We focus on the chemical characterisation of HULIS and provide evidence that nitro-aromatic catecholic compounds are among the major species of HULIS. This indicates that volatile aromatic hydrocarbons emitted during biomass burning are important gas-phase precursors for HULIS.Abstract. Humic-like substances (HULIS) are ubiquitously present in the troposphere and make up a major fraction of continental fine-sized water-soluble organic compounds. They are regarded as material with strong polar, acidic and chromophoric properties; however, structural information at the individual component level is rather limited. In the present study, we have characterised HULIS from different locations using liquid chromatography coupled to photodiode array detection and negative ion electrospray ionisation mass spectrometry. Aerosol samples with particles less than 2.5 mm in diameter (PM 2.5
Abstract. Atmospheric new particle formation (NPF) is an important phenomenon in terms of global particle number concentrations. Here we investigated the frequency of NPF, formation rates of 10 nm particles, and growth rates in the size range of 10–25 nm using at least 1 year of aerosol number size-distribution observations at 36 different locations around the world. The majority of these measurement sites are in the Northern Hemisphere. We found that the NPF frequency has a strong seasonal variability. At the measurement sites analyzed in this study, NPF occurs most frequently in March–May (on about 30 % of the days) and least frequently in December–February (about 10 % of the days). The median formation rate of 10 nm particles varies by about 3 orders of magnitude (0.01–10 cm−3 s−1) and the growth rate by about an order of magnitude (1–10 nm h−1). The smallest values of both formation and growth rates were observed at polar sites and the largest ones in urban environments or anthropogenically influenced rural sites. The correlation between the NPF event frequency and the particle formation and growth rate was at best moderate among the different measurement sites, as well as among the sites belonging to a certain environmental regime. For a better understanding of atmospheric NPF and its regional importance, we would need more observational data from different urban areas in practically all parts of the world, from additional remote and rural locations in North America, Asia, and most of the Southern Hemisphere (especially Australia), from polar areas, and from at least a few locations over the oceans.
[1] An atmospheric HULIS (humic-like substance) sample dissolved in water was used to generate particles with different dry diameters. A HHTDMA (High Humidity Tandem Differential Mobility Analyzer) and LACIS (Leipzig Aerosol Cloud Interaction Simulator) were used to measure hygroscopic growth of the HULIS particles. LACIS also was used to measure the critical supersaturation for the activation of HULIS particles with dry diameters of 50, 75, 100, and 125 nm. Simple Köhler theory was used to simulate the measured hygroscopic growth factors. For this, a new technique was used, where the ionic density (r ion ) was defined as a combination of the HULIS physical properties for which values could not be reliably determined. By adjusting r ion in the Köhler equation, modeled hygroscopic growth could be brought into agreement with the measurements, even without the explicit knowledge of the different HULIS properties. It was demonstrated that the values of r ion determined with our procedure can be reproduced from combinations of physically realistic values of the physical properties represented by r ion . Adjustments of the ionic density were done for two different surface tensions, that of water as the upper limit, and the lowest value that had been measured for this HULIS sample (published previously) as the lower limit. The two adjusted values of r ion were used in the Köhler model to derive critical super-saturations. For more dilute droplets, measured and modeled critical supersaturations were in agreement for both values of the surface tension, whereas for the less dilute solutions, agreement only could be achieved when a lowering of the surface tension due to HULIS was taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.