This study investigated the influence of Bacillus‐based probiotics on performance and intestinal health in broiler challenged with Clostridium perfringens‐induced necrotic enteritis. One‐day‐old Arbor Acre (n = 480) were randomly assigned to four treatments with 10 cages of 12 birds: (a) basal diet negative control (NC), with no probiotics nor antibiotics formulated to contain 2,930 and 3,060 kcal/kg with 24.07 and 15.98% CP, for starter and finisher diet, respectively, (b) basal diet + enramycin (5 mg/kg), an antibiotic growth promoter (AGP); (c) basal diet + Bacillus subtilis B21 at 2 × 109 CFU per g (BS); (d) basal diet + Bacillus licheniformis B26 at 2 × 109 CFU per g (BL); growth performance, intestinal morphology, intestinal lesion scores, short‐chain fatty acids (SCFAs) and mucosal barrier tight junction's (TJ) mRNA expression were assessed. NC‐ and BL‐fed groups showed higher (p = 0.005) average daily feed intake from d1 to d21 than AGP and BS, whereas BS‐ and AGP‐fed groups showed higher average daily weight gain from d22 to d42 and d1 to d42 of age. Higher mortality rate of (12.5%) and lower of (5.5%) were recorded in AGP and NC fed‐groups respectively, lesion score was higher in BS and BL than in AGP, while no lesion was observed in NC group, results revealed higher duodenum and jejunum villus height to crypt depth (VH:CD) compared with NC and BS. Probiotics‐fed groups showed higher total (SCFAs), acetic and butyric acid concentrations at d21 post‐challenge (PC) than other groups. The expression of claudin‐1 was upregulated in duodenum (d7) PC and in jejunum (d7) and (d21) PC in BL group, while at d21 PC, the expression of occludens was higher in jejunum and ileum by AGP and BL. The present study indicated both BS and BL have some similarity with AGP in preventing or partially preventing NE effect in broilers.
The present study was designed to alleviate the negative biohazards of high ambient temperature on the productive performance and physiological status of laying hens. A total of 135 Bovans laying hens were distributed into nine groups in a 3 × 3 factorial design experiment. Basal diet was supplemented with vitamin E at levels of 0, 250, and 500 mg /kg diet. Within each dietary vitamin E level, each diet was supplemented with sodium selenite as a source of selenium (Se) to supply 0, 0.25, and 0.50 mg Se/kg diet. Results showed that supplementing layer's diet with 500 mg vitamin E/kg was accompanied with the lowest feed consumption (FC) and feed conversion ratio (FCR). The interaction among vitamin E and Se levels exerted significant effects only on FC and FCR. Insignificant differences were observed in egg quality criteria due to the treatments studied. Increasing vitamin E level was associated with a gradual decrease in basophil count and an increase in monocytes. A gradual decrease in the count of each of heterophils, monocytes, and eosinophils was observed with the elevation in the dietary Se level. The combination among vitamin E and Se levels produced a significant effect on all hematological parameters studied. As vitamin E increased, a marked decrease in serum AST and a gradual increase in total lipids, total cholesterol, and calcium were observed. As the level of dietary Se increased, serum total protein, albumin, T, total cholesterol, and total lipids increased. No significant impacts were detected for the interaction among vitamin E and Se levels on any of blood constituents determined except serum globulin, ALT, and calcium. In conclusion, the combination between vitamin E and Se showed a good ability to alleviate the harmful impacts of heat stress and produced the highest productive performance when compared with the other groups, which exhibit the synergistic effect between the two antioxidants.
Protein quality plays a key role than quantity in growth, production, and reproduction of ruminants. Application of high concentration of dietary crude protein (CP) did not balance the proportion of these limiting amino acids (AA) at duodenal digesta of high producing dairy cow. Thus, dietary supplementation of rumen-protected AA is recommended to sustain the physiological, productive, and reproductive performance of ruminants. Poor metabolism of high CP diets in rumen excretes excessive nitrogen (N) through urine and feces in the environment. This excretion is usually in the form of nitrous oxide, nitric oxide, nitrate, and ammonia. In addition to producing gases like methane, hydrogen carbon dioxide pollutes and has a potentially negative impact on air, soil, and water quality. Data specify that supplementation of top-limiting AA methionine and lysine (Met + Lys) in ruminants' ration is one of the best approaches to enhance the utilization of feed protein and alleviate negative biohazards of CP in ruminants' ration. In conclusion, many in vivo and in vitro studies were reviewed and reported that low dietary CP with supplemental rumen-protected AA (Met + Lys) showed a good ability to reduce N losses or NH. Also, it helps in declining gases emission and decreasing soil or water contamination without negative impacts on animal performance. Finally, further studies are needed on genetic and molecular basis to explain the impact of Met + Lys supplementation on co-occurrence patterns of microbiome of rumen which shine new light on bacteria, methanogen, and protozoal interaction in ruminants.
Folate has gained significant attention due to its vital role in biological methylation and epigenetic machinery. Folate, or vitamin (B9), is only produced through a de novo mechanism by plants and micro-organisms in the rumen of mature animals. Although limited research has been conducted on folate in ruminants, it has been noted that ruminal synthesis could not maintain folate levels in high yielding dairy animals. Folate has an essential role in one-carbon metabolism and is a strong antiproliferative agent. Folate increases DNA stability, being crucial for DNA synthesis and repair, the methylation cycle, and preventing oxidation of DNA by free radicals. Folate is also critical for cell division, metabolism of proteins, synthesis of purine and pyrimidine, and increasing the de novo delivery of methyl groups and S-adenosylmethionine. However, in ruminants, metabolism of B12 and B9 vitamins are closely connected and utilization of folate by cells is significantly affected by B12 vitamin concentration. Supplementation of folate through diet, particularly in early lactation, enhanced metabolic efficiency, lactational performance, and nutritional quality of milk. Impaired absorption, oxidative degradation, or deficient supply of folate in ruminants affects DNA stability, cell division, homocysteine remethylation to methionine, de novo synthesis of S-adenosylmethionine, and increases DNA hypomethylation, uracil misincorporation into DNA, chromosomal damage, abnormal cell growth, oxidative species, premature birth, low calf weight, placental tube defects, and decreases production and reproduction of ruminant animals. However, more studies are needed to overcome these problems and reduce enormous dietary supplement waste and impaired absorption of folate in ruminants. This review was aimed to highlight the vital role of folic acid in ruminants performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.