These results suggest that blue LED-induced RD may be a useful animal model in which to study the pathogenesis of RD, including age-related macular degeneration, and to evaluate the effects of new therapeutic agents prior to clinical trials, where oxidative stress and inflammation are the underlying RD mechanisms.
Connexin 36 (Cx36) is a channel-forming protein found in the membranes of apposed cells, forming the hexameric hemichannels of intercellular gap junction channels. It localizes to certain neurons in various regions of the brain including the retina. We characterized the expression pattern of neuronal Cx36 in the guinea pig retina by immunocytochemistry using specific antisera against Cx36 and green/red cone opsin or recoverin. Strong Cx36 immunoreactivity was visible in the ON sublamina of the inner plexiform layer and in the outer plexiform layer, as punctate labelling patterns. Double-labelling experiments with antibody directed against Cx36 and green/red cone opsin or recoverin showed that strong clustered Cx36 immunoreactivity localized to the axon terminals of cone or close to rod photoreceptors. By electron microscopy, Cx36 immunoreactivity was visible in the gap junctions as well as in the cytoplasmic matrices of both sides of cone photoreceptors. In the gap junctions between cone and rod photoreceptors, Cx36 immunoreactivity was only visible in the cytoplasmic matrices of cone photoreceptors. These results clearly indicate that Cx36 forms homologous gap junctions between neighbouring cone photoreceptors, and forms heterologous gap junctions between cone and rod photoreceptors in guinea pig retina. This focal location of Cx36 at the terminals of the photoreceptor suggests that rod photoreceptors can transmit rod signals to the pedicle of a neighbouring cone photoreceptor via Cx36, and that the cone in turn signals to corresponding ganglion cells via ON and OFF cone bipolar cells.
DBA/2J (D2) mice develop a form of progressive pigmentary glaucoma with increasing age. We have compared retinal cell populations of D2 mice with those in control C57BL/6J mice to provide information on retinal histopathology in the D2 mouse. The D2 mouse retina is characterized by a reduction in retinal thickness caused mainly by a thinning of the inner retinal layers. Immunocytochemical staining for specific inner retinal neuronal markers, viz., calbindin for horizontal cells; protein kinase C (PKC) and recoverin for bipolar cells, glycine, gamma-aminobutyric acid (GABA), choline acetyltransferase (ChAT), and nitric oxide synthase (NOS) for amacrine cells, and osteopontin (OPN) for ganglion cells, was performed to detect preferentially affected neurons in the D2 mouse retina. Calbindin, PKC, and recoverin immunoreactivities were not significantly altered. Amacrine cells immunoreactive for GABA, ChAT, and OPN were markedly decreased in number, whereas NOS-immunoreactive amacrine cells increased in number. However, no changes were observed in the population of glycine-immunoreactive amacrine cells. These findings indicate a significant loss of retinal ganglion and some amacrine cells, whereas glycinergic amacrine cells, horizontal, and bipolar cells are almost unaffected in the D2 mouse. The reduction in amacrine cells appears to be attributable to a loss of GABAergic and particularly cholinergic amacrine cells. The increase in nitrergic neurons with the consequent increase in NOS and NO may be important in the changes in the retinal organization that lead to glaucomain D2 mice. Thus, the D2 mouse retina represents a useful model for studying the pathogenesis of glaucoma and mechanisms of retinal neuronal death and for evaluating neuroprotection strategies.
The development of cholinergic cells in the rat retina has been examined with immunocytochemistry by using antisera against choline acetyltransferase (ChAT). ChAT-immunoreactive (IR) cells were first detected at embryonic day 17 (E17) in the transitional zone between the neuroblastic layer (NBL) and ganglion cell layer (GCL). At E20, ChAT-IR cells are located exclusively in the GCL. At postnatal day 0 (P0), ChAT immunoreactivity appeared for the first time in cells at the distal margin of the NBL. Two prominent bands of labeled processes were first visible at P3, and by P15, these two bands resembled those of the adult retina. In addition, ChAT immunoreactivity appeared transiently in horizontal cells from P5 to P10. The number of ChAT-IR cells increased steadily up to P15. This resulted in a 93.8-fold increase between E17 and P15 (680-63,800 cells). However, after P15, the number declined by 19% from 63,800 cells at P15 to 51,800 in the adult. At all ages, the spatial density of each ChAT-IR cell population in the central retina was higher than in the periphery. In both central and peripheral regions, the peak density of ChAT-IR cells in the GCL was attained at E20. However, in the INL, the peak densities occurred at P3 in the central region and at P5 in the peripheral region. Up to P15, the soma diameter of ChAT-IR cells in the INL and GCL in each region increased continuously, reaching peak values at P15. Our results demonstrate that ChAT immunoreactivity is expressed in early developmental stages in the rat retina, as in other mammals, and that acetylcholine released from ChAT-IR cells may have neurotrophic functions in retinal maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.