Endometriosis causes significant chronic pelvic pain, dysmenorrhea, and infertility and affects 10% of all women. In endometriosis, ectopic endometrium surviving after retrograde menstruation exhibits an abnormal immune response characterized by increased levels of activated macrophages and inflammatory cytokines. Particularly, dysfunctional natural killer (NK) cells play an important role in the pathogenesis of the disease by either facilitating or inhibiting the survival, implantation, and proliferation of endometrial cells. NK cells in the peritoneum and peritoneal fluid exhibit reduced levels of cytotoxicity in women with endometriosis. Several cytokines and inhibitory factors in the serum and peritoneal fluid also dysregulate NK cell cytotoxicity. Additionally, increased numbers of immature peripheral NK cells and induction of NK cell apoptosis are evident in the peritoneal fluid of women with endometriosis. The high rate of endometriosis recurrence after pharmaceutical or surgical treatment, which is associated with dysfunctional NK cells, indicates that new immunomodulatory management strategies are required. A good understanding of immune dysfunction would enable improvement of current treatments for endometriosis.
Background and Aim: NK cells are one of the major immune cells in endometriosis pathogenesis. While previous clinical studies have shown that helixor A to be an effective treatment for endometriosis, little is known about its mechanism of action, or its relationship with immune cells. The aim of this study is to investigate the effects of helixor A on Natural killer cell (NK cell) cytotoxicity in endometriosisMaterials and Methods: We performed an experimental study. Samples of peritoneal fluid were obtained from January 2011 to December 2011 from 50 women with endometriosis and 50 women with other benign ovarian cysts (control). Peritoneal fluid of normal control group and endometriosis group was collected during laparoscopy. Baseline cytotoxicity levels of NK cells were measured with the peritoneal fluid of control group and endometriosis group. Next, cytotoxicity of NK cells was evaluated before and after treatment with helixor A. NK-cell activity was determined based upon the expression of CD107a, as an activation marker.Results: NK cells cytotoxicity was 79.38±2.13% in control cells, 75.55±2.89% in the control peritoneal fluid, 69.59±4.96% in endometriosis stage I/II endometriosis, and 63.88±5.75% in stage III/IV endometriosis. A significant difference in cytotoxicity was observed between the control cells and stage III/IV endometriosis, consistent with a significant decrease in the cytotoxicity of NK cells in advanced stages of endometriosis; these levels increased significantly after treatment with helixor A; 78.30% vs. 86.40% (p = 0.003) in stage I/II endometriosis, and 73.67% vs. 84.54% (p = 0.024) in stage III/IV. The percentage of cells expressing CD107a was increased significantly in each group after helixor A treatment; 0.59% vs. 1.10% (p = 0.002) in stage I/II endometriosis, and 0.79% vs. 1.40% (p = 0.014) in stage III/IV.Conclusions: Helixor A directly influenced NK-cell cytotoxicity through direct induction of CD107a expression. Our results open new role of helixor A as an imune modulation therapy, or in combination with hormonal agents, for the treatment of endometriosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.