In a battery-electric vehicle, a representative electric vehicle, there is a growing demand for performance and one-charge mileage improvement. As an alternative to such improvements, the capacity of the battery has been increased; however, due to the corresponding increase in the weight of the battery and the limited space in the vehicle, increasing the capacity of the battery also has limitations. Therefore, researches are being actively conducted to improve system operation efficiency to overcome such limitations. This paper proposes a distributing method of the driving forces to a battery-powered electric shuttle bus for last-mile mobility equipped with the decentralized driving system while taking into account voltage changes of the input terminals due to changes in the battery charge. The system operation efficiency changes were compared and evaluated by performing energy consumption analysis using ‘Manhattan Bus Driving Cycle’ at low voltage condition (SOC 20%). Various analyzes were performed and compared, such as the uniform distribution method of driving forces of the front and rear wheels (Uniform), the optimization method without considering the input terminal voltage change (Vnorm = 90 V), and the optimization method considering the input terminal voltage change (Vdclink). As a result, it shows that the proposed algorithm can improve 6.0% compared to the conventional uniform driving force distribution method (Uniform). Moreover, it shows that the real-time optimization method without considering the input voltage change (Vnorm = 90 V) can improve 5.3% compared to the uniform distribution method. The proposed method can obtain an additional 0.7% increase in total cost compared to the existing optimization method, which shows that the vehicle system has cost-effectiveness by reducing the battery capacity required to achieve the same mileage.
In this paper, the rule-based control algorithm for 48V Mild Hybrid Electric Vehicle (mHEV) for improving fuel economy was proposed. Control modes are composed of Idle-Stop-and-Go (ISG), Alternating, Regenerative braking, and Boosting. State Machine determines each control mode. For comparison of the fuel economy improvement, the vehicle tests on the vehicle dynamometer were conducted. The test results of the proposed algorithm were compared with the vehicle's fuel economy with ISG as a baseline. As a result, the proposed algorithm improves the fuel economy by 4.5% in the WLTC cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.