Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance of hy5 plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box-like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression.endoplasmic reticulum stress | light signaling | protein-folding capacity | crosstalk | unfolded protein response
YUCCA (YUC) proteins constitute a family of flavin monooxygenases (FMOs), with an important role in auxin (IAA) biosynthesis. Here we report that Arabidopsis plants overexpressing YUC6 display enhanced IAA-related phenotypes and exhibit improved drought stress tolerance, low rate of water loss and controlled ROS accumulation under drought and oxidative stresses. Co-overexpression of an IAA-conjugating enzyme reduces IAA levels but drought stress tolerance is unaffected, indicating that the stress-related phenotype is not based on IAA overproduction. YUC6 contains a previously unrecognized FAD- and NADPH-dependent thiol-reductase activity (TR) that overlaps with the FMO domain involved in IAA biosynthesis. Mutation of a conserved cysteine residue (Cys-85) preserves FMO but suppresses TR activity and stress tolerance, whereas mutating the FAD- and NADPH-binding sites, that are common to TR and FMO domains, abolishes all outputs. We provide a paradigm for a single protein playing a dual role, regulating plant development and conveying stress defence responses.
Methane delayed ileal peristaltic conduction velocity by augmenting contractility. Hydrogen shortened colonic transit, and that effect was more prominent in the proximal colon than distal colon.
We previously reported that ginsan, a purified polysaccharide isolated from Panax ginseng, had a mitogenic activity, induced LAK cells, and increased levels of several cytokines. In an effort to identify other immunostimulatory effects, we evaluated the protective effects of ginsan injected in vivo against radiation by measuring its effects on the CFU-S bone marrow cells and spleen cells. Ginsan was found to significantly increase the number of bone marrow cells, spleen cells, granulocyte-macrophage colony-forming cells (GM-CFC), and circulating neutrophils, lymphocytes and platelets in irradiated mice. In addition, ginsan induced the endogenous production of cytokines such as Il1, Il6, Ifng and Il12, which are required for hematopoietic recovery, and was able to enhance Th1 function while interfering with the Th2 response in irradiated mice. We demonstrated that pretreatment with ginsan protected mice from the lethal effects of ionizing radiation more effectively than when it was given immediately after or at various times after irradiation. A significant increase in the LD(50/30) from 7.54 Gy for PBS injection to 10.93 Gy for mice pretreated with 100 mg/kg ginsan was observed. These findings indicate that ginsan may be a useful agent to reduce the time necessary for reconstituting hematopoietic cells after irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.