Signaling molecules that bind to chemokine receptors should play key roles in regulation of cell migration induced by chemokines. To characterize the CCR1-mediated cellular signal transduction mechanism, we used the yeast two-hybrid system to identify a cellular ligand for CCR1. LZIP, which has been known as a transcription factor in various cell types, was identified as a CCR1 binding protein. Although the ability of LZIP to bind DNA is possibly what allows it to function as a transcription factor, its detailed function and participation in chemotaxis have not been established. We found that LZIP binds to CCR1 based on results of a mammalian two-hybrid assay and immunoprecipitation experiments. The 21-260 residues of LZIP were essential for interaction with CCR1. Results from a chemotaxis assay using LZIP transfected cells showed that LZIP enhanced Lkn-1-induced chemotaxis, whereas the chemotactic activities induced by other CC chemokines that bind to CCR1, including MIP-1alpha, RANTES, or HCC-4, were not affected by LZIP overexpression. These data indicate that LZIP binds to CCR1 and that the interaction between CCR1 and LZIP participates in regulation of Lkn-1-dependent cell migration without affecting the chemotactic activities of other CC chemokines that bind to CCR1.
Leukotactin-1 (Lkn-1)/CCL15 is a recently cloned CC-chemokine that binds to the CCR1 and CCR3. Although Lkn-1 has been known to function as a chemoattractant for neutrophils, monocytes and lymphocytes, its cellular mechanism remains unclear. To understand the mechanism of Lkn-1-induced chemotaxis signaling, we examined the chemotactic activities of human osteogenic sarcoma cells expressing CCR1 in response to Lkn-1 using inhibitors of signaling molecules. Inhibitors of G i /G o protein, phospholipase C (PLC) and protein kinase CN N (PKCN N) inhibited the chemotactic activity of Lkn-1 indicating that Lkn-1-induced chemotaxis signal is transduced through G i /G o protein, PLC and PKCN N. The activities of PLC and PKCN N were also enhanced by Lkn-1 stimulation. Chemotactic activity of Lkn-1 was inhibited by the treatment of cycloheximide and actinomycin D suggesting that newly synthesized proteins are needed for chemotaxis. Nuclear factor-U UB (NF-U UB) inhibitor reduced chemotactic activity of Lkn-1. DNA binding activity of NF-U UB was also enhanced by Lkn-1 stimulation. These results suggest that Lkn-1 transduces the signal through G i /G o protein, PLC, PKCN N, NF-U UB and newly synthesized proteins for chemotaxis. ß 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.