Shewanella donghaensis sp. nov., a psychrophilic, piezosensitive bacterium producing high levels of polyunsaturated fatty acid, isolated from deep-sea sediments A Gram-negative, motile, rod-shaped, psychrophilic bacterium, LT17 T , was isolated from deep-sea sediments (3300 m depth) of the East Sea (Sea of Japan). Optimal growth of LT17 T requires the presence of 2.5 % (w/v) NaCl, a pH of 7.0-7.5 and a temperature of 17 6C. The isolate grows optimally under a hydrostatic pressure of 10 MPa and growth is possible between 0.1 and <30 MPa. The novel strain is positive in tests for catalase, oxidase, lipase, b-glucosidase and gelatinase activities and reduces nitrate to nitrate. The predominant cellular fatty acids are iso-C13 : 0, iso-C15 : 0, C16 : 0, C16 : 1v7 and C20 : 5v3. The DNA G+C content of strain LT17 T is 38.8 mol%. Phylogenetic analysis of 16S rRNA gene sequences places this bacterium in the class Gammaproteobacteria, within the genus Shewanella. The closest relatives of strain LT17 T are Shewanella japonica (97.8 % gene sequence similarity), Shewanella pacifica (97.5 %), Shewanella olleyana (96.8 %), Shewanella frigidimarina (96.5 %) and Shewanella gelidimarina (95.4 %). The DNA-DNA hybridization levels between the novel isolate and its closest known phylogenetic relatives, S. japonica and S. pacifica, are lower than 14 %. On the basis of this polyphasic evidence, strain LT17 T represents a novel species of the genus Shewanella, for which the name Shewanella donghaensis sp. nov. is proposed. The type strain is LT17 T (=KCTC
This is an experimental result for the inhibition of effects of the growing defect. Up to now, it has been considered and defined that the growing defect is an unexpected and unusual reaction by bonding impure ions existed on the mask each other. This study is not only to suppress the unexpected reaction when making the final mask but also to stabilize the surface of mask by controlling by-product occurred when stripping upper Cr layer and damaged layer from sputtering process. According to the analysis of the surface roughness stemming from each process (from wet etching to cleaning Process) of MoSi layer, the surface still comes to be rough when a mask is done through all process. So, heat treatment was performed and surface roughness was measured to figure out how much the surface condition would be improved and how many remaining SO4, NH4 Ions on the surface after cleaning process reduced. This study shows the major factor causing plasma damage is a dry etcher, a way to control the damaged layer of MoSi at PR strip process, the level of stabilization of mask surface through cleaning process and a clue to be able to prove the stabilization by adding specific process. Analysis tools for this study are as follows. AFM (for checking the roughness of surface), TEM (for checking cross-section) and IC (Ion chromatography)analysis equipment.
Duchesnea chrysantha belongs to the Rosaceae family and has been used traditionally for the treatment of various diseases in Korea and other parts of East Asia. This study examined the antiinflammatory effect of Duchesnea chrysantha extract (DcE) on atopic dermatitis in vitro and in vivo. DcE inhibited the production of IL-6, IL-8 and MCP-1 in THP-1 cells and the release of IL-6 and MCP-1 in EoL-1 cells after treatment with house dust mite extract. In the in vivo experiment, Nc/Nga mice were sensitized to DNCB and then orally and dorsally administered DcE (50 mg/kg in PBS) for 3 weeks. The DcE administration significantly reduced the skin severity score when compared with the control group and inhibited the thickening of the epidermis and infiltration of inflammatory cells into the dermis. In addition, the serum IgE levels decreased markedly in the DcE-treated mice when compared with the control group. The synthesis of IL-5, IL-13, MCP-1 and eotaxin was also decreased in splenocytes of the DcE-treated group, while IFN-γ was increased in the Dc-administered group. These results may indicate that DcE attenuates the development of atopic dermatitis-like lesions by lowering the IgE and inflammatory cytokine levels, and that it is useful in drug development for the treatment of atopic dermatitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.