Growth factors are endogenous signaling molecules that regulate cellular responses required for wound healing processes such as migration, proliferation, and differentiation. However, exogenous application of growth factors has limited effectiveness in clinical settings due to their low in vivo stability, restricted absorption through skin around wound lesions, elimination by exudation prior to reaching the wound area, and other unwanted side effects. Sophisticated systems to control the spatio-temporal delivery of growth factors are required for the effective and safe use of growth factors as regenerative treatments in clinical practice, such as biomaterial-based drug delivery systems (DDSs). The current review describes the roles of growth factors in wound healing, their clinical applications for the treatment of chronic wounds, and advances in growth factor-loaded DDSs for enhanced wound healing, focusing on micro- and nano-particulate systems, scaffolds, hydrogels, and other miscellaneous systems.
The concurrent use of drugs and herbal products is becoming increasingly prevalent over the last decade. Several herbal products have been known to modulate cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) which are recognized as representative drug metabolizing enzymes and drug transporter, respectively. Thus, a summary of knowledge on the modulation of CYP and P-gp by commonly used herbs can provide robust fundamentals for optimizing CYP and/or P-gp substrate drug-based therapy. Herein, we review ten popular medicinal and/or dietary herbs as perpetrators of CYP- and P-gp-mediated pharmacokinetic herb-drug interactions. The main focus is placed on previous works on the ability of herbal extracts and their phytochemicals to modulate the expression and function of CYP and P-gp in several in vitro and in vivo animal and human systems.
A PVA nanofibrous matrix was prepared by electrospinning an aqueous 10 wt % PVA solution. The mean diameter of the PVA nanofibers electrospun from the PVA aqueous solution was 240 nm. The water resistance of the as-spun PVA nanofibrous matrix was improved by physically crosslinking the PVA nanofibers by heat treatment at 150 degrees C for 10 min, which were found to be the optimal heat treatment conditions determined from chemical and morphological considerations. In addition, the heat-treated PVA (H-PVA) nanofibrous matrix was coated with a chitosan solution to construct biomimetic nanofibrous wound dressings. The chitosan-coated PVA (C-PVA) nanofibrous matrix showed less hydrophilic and better tensile properties than the H-PVA nanofibrous matrix. The effect of the chitosan coating on open wound healing in a mouse was examined. The C-PVA and H-PVA nanofibrous matrices showed faster wound healing than the control. The histological examination and mechanical stability revealed the C-PVA nanofibrous matrix to be more effective as a wound-healing accelerator in the early stages of wound healing than the H-PVA nanofibrous matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.