Electrochemical equilibrium and the transfer of mass and charge through interfaces at the atomic scale are of fundamental importance for the microscopic understanding of elementary physicochemical processes. Approaching atomic dimensions, phase instabilities and instrumentation limits restrict the resolution. Here we show an ultimate lateral, mass and charge resolution during electrochemical Ag phase formation at the surface of RbAg(4)I(5) superionic conductor thin films. We found that a small amount of electron donors in the solid electrolyte enables scanning tunnelling microscope measurements and atomically resolved imaging. We demonstrate that Ag critical nucleus formation is rate limiting. The Gibbs energy of this process takes discrete values and the number of atoms of the critical nucleus remains constant over a large range of applied potentials. Our approach is crucial to elucidate the mechanism of atomic switches and highlights the possibility of extending this method to a variety of other electrochemical systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.