The positive and reliable effect of temporary immersion systems on in vitro shoot proliferation was already proved for different plant genera and it is now presented as an alternative for plantain micropropagation. Some culture parameters affecting the efficiency of the twin flasks system or temporary immersion bioreactor (Escalona et al., 1999) were investigated. Three different cytokinins (benzyladenine, thidiazuron and meta-topolin) were added to the culture medium and meta-topolin at a concentration of 4.4 lM was proved to be the most efficient. Successive subcultures (28 days per subculture) were performed on medium supplemented with meta-topolin, revealing a decrease in multiplication after the 6th subculture. Multiplication rate was not changed within the ranges of immersion times (4, 12 or 22 min) and frequencies (every 3, 5 or 7 h) tested. The size of the bioreactor (250, 1,000, 5,000 or 10,000 ml) and the volume of medium per inoculum (10, 20 or 30 ml) were also evaluated and appeared to have an influence on the multiplication. A proportion of 25-100 ml of headspace per inoculum and 30 ml of medium per inoculum resulted in a multiplication rate >13 in 28 days.Abbreviations: BA -N 6 -benzyladenine; MET -meta-topolin; SP medium -standard proliferation medium; TDZ -thidiazuron; TIB -temporary immersion bioreactor
In this work, we studied the effects of cryopreservation on various parameters of early stages of germination of Phaseolus vulgaris seeds (0, 7 and 14 days). Percentages of germination, fresh mass of different plant parts, levels of chlorophyll pigments (a, b, total), malondialdehyde, other aldehydes, phenolics (cell wall-linked, free, and total) and protein were determined. No phenotypic changes were observed visually in seedlings recovered from cryopreserved seeds. However, several significant effects of seed liquid nitrogen exposure were recorded at the biochemical level. There was a significant negative effect of cryopreservation on shoot protein content, which decreased from 3.11 mg g(-1) fresh weight for non-cryopreserved controls to 0.44 mg g(-1) fresh shoot weight for cryopreserved seeds. On the other hand, cryopreservation significantly increased levels of other aldehydes than malondialdehyde in shoots at day 7, from 56.47 μmol g(-1) for non-cryopreserved controls to 253.19 μmol g(-1) fresh shoot weight for cryopreserved samples. Liquid nitrogen exposure significantly reduced phenolics contents (free, cell-wall linked, total) in roots at day 7 after onset of germination. In general, roots were more affected by cryostorage compared with other plant parts, while leaves were the least affected. The effects of seed cryopreservation seem to decline progressively along with seedling growth.
The objective of this work was to evaluate if cryostorage of Phaseolus vulgaris L. seeds induced variations in regenerated plants at the phenotypic and molecular levels. A series of agricultural traits was measured on plants grown from control, non-cryopreserved and cryopreserved seeds, and the genetic stability of plants of the second generation was analysed at selected microsatellite loci. The phenotype of the second generation plants was evaluated as well. No statistically significant phenotypic differences were observed for the parameters measured, neither in the first nor in the second generations. Averaging both treatments, about 76% of the seeds had germinated 10 days after sowing. At harvest we recorded plants with about 73 cm in height, 13 stem internodes, 25 fruits, 103 grains and 4 grains per fruit. One hundred seeds weighted about 26 g. The genetic analyses performed on the second generation plants using six nuclear Simple Sequences Repeats (SSR) markers revealed no changes in microsatellite length between control and cryopreserved samples, implying that there was no effect of seed liquid nitrogen exposure on genome integrity. The phenotypic and molecular results reported here confirm that cryostorage is an efficient and reliable technique to conserve P. vulgaris seeds and regenerate true-to-type plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.