ClinicalTrials.gov identifier: NCT00457509 .
Mutations in the p53 tumor suppressor gene are commonly found in the major human cancers and the mutational spectrum in some cancer types is consistent with the genotoxic effects of the associated environmental risk factors. Thus far there is little information on p53 mutations in cancers of factory workers with a history of carcinogen exposure in the workplace. Occupational exposure to vinyl chloride causes liver angiosarcomas (ASL) and also increases the risk of several other cancers. Loss of p53 function in osteo- and fibrosarcomas can occur by two different mechanisms, p53 mutation and amplification of the MDM2 gene. We examined tumors from five vinyl chloride-exposed patients, four with ASL and one with hepatocellular carcinoma (HCC), for evidence of MDM2 proto-oncogene amplification or p53 mutation in exons 5-8. Amplification of MDM2 was not found, but in two of the angiosarcomas an A:T to T:A missense mutation was detected. p53 sequence analysis of vinyl chloride associated cancers may provide valuable information on the relationship between carcinogen exposure and DNA damage in cancer-related genes.
The ongoing epizootic of highly pathogenic avian H5N1 influenza and its direct transmissibility and high pathogenicity in humans has led to renewed interest in the development of influenza vaccines with enhanced immunogenicity. Influenza vaccines are currently under development against influenza strains that are potentially pandemic threats, such as H5N1, as well as against the current seasonal influenza strains for use in populations susceptible to severe influenza disease. Influenza vaccines may be generally divided into two types: seasonal vaccines for use in a population that is largely primed to subtypes of the circulating influenza A strains and pandemic influenza vaccines that are designed to protect against influenza A viruses of a hemagglutinin (HA) subtype, to which the vast majority of the population is immunologically naive. Pandemic influenza vaccines can be further subdivided into prepandemic vaccines produced for use prior to or just after the declaration of a pandemic, and pandemic influenza vaccines that would be produced and used only after a pandemic is declared. Prepandemic influenza vaccines are formulated using HA and neuraminidase, which are likely to be antigenically similar to the influenza virus subtype deemed to pose the most probable pandemic threat. Enhanced vaccine immunogenicity is desirable for pandemic influenza vaccines and for seasonal vaccines used in target populations, such as the elderly, in which vaccine responses against the circulating influenza subtypes may be weak. Various methods to enhance the immunogenicity of influenza vaccines are under evaluation. Along with dose escalation and alternative delivery routes, strategies for improving the immunogenicity of influenza vaccines have focused on the use of immunologic adjuvants. An adjuvanted seasonal influenza vaccine, Fluad, has been licensed in some countries in Europe since 1997 for the elderly population, and a number of clinical trials have been completed or are in progress evaluating the use of adjuvants with pandemic and seasonal influenza vaccines. This review will focus on the use of emulsion-based adjuvants for enhancing the immunogenicity of pandemic influenza vaccines and of seasonal influenza vaccines in target populations.
Anti-CV2 autoantibodies have recently been discovered in patients with paraneoplastic neurological diseases (PND). These disorders are associated with neuronal degeneration, mediated by autoimmune processes, in patients with systemic cancer. Anti-CV2 autoantibodies recognize a brain protein of 66 kDa developmentally regulated and specifically expressed by a subpopulation of oligodendrocytes in the adult brain. Here, we demonstrate that anti-CV2 sera recognize several post-translationally modified forms of Ulip4/CRMP3, a member of a protein family related to the axonal guidance and homologous to the Unc-33 gene product in Caenorhabditis elegans. The sequence of the human Ulip4/CRMP3 was determined and the gene localized to chromosome 10q25.2-q26, a region mutated in glioblastomas and containing tumour suppressor genes. The identification of the Ulip/CRMP proteins as recognized by anti-CV2 sera should provide new insights into the role of Ulip/CRMPs in oligodendrocytes and into pathophysiology of PND.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.