Hate speech and abusive language spreading on social media need to be detected automatically to avoid conflicts between citizens. Moreover, hate speech has a target, category, and level that also need to be detected to help the authority in prioritizing which hate speech must be addressed immediately. This research discusses multi-label text classification for abusive language and hate speech detection including detecting the target, category, and level of hate speech in Indonesian Twitter using machine learning approaches with Support Vector Machine (SVM), Naive Bayes (NB), and Random Forest Decision Tree (RFDT) classifier and Binary Relevance (BR), Label Power-set (LP), and Classifier Chains (CC) as the data transformation method. We used several kinds of feature extractions which are term frequency, orthography, and lexicon features. Our experiment results show that in general the RFDT classifier using LP as the transformation method gives the best accuracy with fast computational time.
Tersedianya data histori rekam medis pasien kanker serviks pada institusi pelayanan kesehatan, tidak disertai dengan proses ekstraksi menjadi sebuah pengetahuan atau informasi. Penggunaan teknik data mining sangat berpotensi untuk diimplementasikan kedalam sistem yang dapat melakukan prediksi penyakit kanker serviks. Pada penelitian ini berfokus pada dataset diagnosa medis pasien yang akan melakukan tes Pap Smear. Algoritma yang digunakan untuk melakukan klasifikasi penyakit kanker serviks adalah Classification And Regression Trees (CART), Naive Bayes, dan k-Nearest Neighbor (k-NN). Pengujian yang dilakukan terhadap algoritma CART Decision Tree, Naive Bayes, dan k-NN, menggunakan formula Confusion Matrix, dengan menggunakan teknik pemecahan dataset Holdout. Hasil pengujian terhadap algoritma yang digunakan, menunjukkan algoritma Naive Bayes memiliki akurasi terbaik sebesar 94,44%, sedangkan tingkat akurasi yang dihasilkan algoritma CART dan k-NN adalah 88,89%, 85,04%. Performa yang didapatkan oleh masing-masing algoritma yang digunakan, memungkinkan penggunaan sistem prediksi penyakit kanker serviks untuk mendukung keputusan klinis pada pasien baru.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.