The intrinsic advantages of microcapsules with regard to nanocapsules as intravenous drug carrier systems are still not fully exploited. Especially, in clinical situations where a long-term drug release within the vascular system is desired, if large amounts of drug have to be administered or if capillary leakage occurs, long-circulating microparticles may display a superior alternative to nanoparticles. Here, microcapsules were synthesised and parameters such as in vitro tendency of agglomeration, protein adsorption and in vivo performance were investigated. Biocompatible poly(ethylene glycol) (PEG)-coated poly(DL-lactide-co-glycolide) (PLGA) as wall material, solid and perfluorodecalin (PFD)-filled PEG-PLGA microcapsules (1.5 µm diameter) were manufactured by using a modified solvent evaporation method with either 1% poly(vinyl alcohol) (PVA) or 1.5% cholate as emulsifying agents. Compared to microcapsules manufactured with cholate, the protein adsorption (albumin and IgG) was clearly decreased and agglomeration of capsules was prevented, when PVA was used. The intravenous administration of these microcapsules, both solid and PFD-filled, in rats was successful and exhibited a circulatory half-life of about 1 h. Our data clearly demonstrate that PEG-PLGA microcapsules, manufactured by using PVA, are suitable biocompatible, long-circulating drug carriers, applicable for intravenous administration.
Bretschneider (histidine-tryptophan-ketoglutarate, HTK) solution employed for induction of cardioplegic arrest possesses a high histidine concentration (198 mM). Due to the large volume administered, massive amounts of histidine are incorporated. The aim of the study was to evaluate alterations in amino acid and nitrogen metabolism originating from histidine degradation. Between 07/2014 and 10/2014, a total of 29 consecutive patients scheduled for elective isolated coronary artery bypass grafting with cardiopulmonary bypass (CPB) were enrolled in this prospective observational study. The patients received 1.6 L cardioplegic Bretschneider solution on average. Blood gas and urine samples obtained were analyzed for amino acid as well as urea and ammonium concentrations. After CPB initiation, plasma histidine concentration greatly increased to 21,000 µM to reach 8000 µM at the end. Within the operative period, plasma concentrations of aspartate, glutamate, asparagine, alanine, and glutamine increased variable in magnitude. During the same time, urinary analysis revealed histidine excretion of 19,500 µmol in total and marked elevations in glutamate and glutamine excretion. The absolute amounts of urea and ammonium excreted additionally were 3 mmol and 8 mmol, respectively. Already during CPB, distinct amounts of the histidine administered are metabolized, mainly to other amino acids, but only small amounts to urea and ammonia. Thus, the impact of the histidine incorporated on acid–base status in the intraoperative phase is minor. On the other hand, intraoperative provision of several amino acids arising from histidine metabolism might mitigate postaggression syndrome.
The host response against foreign materials designates the biocompatibility of intravenously administered microcapsules and thus, widely affects their potential for subsequent clinical use as artificial oxygen/drug carriers. Therefore, body distribution and systemic parameters, as well as markers of inflammation and indicators of organ damage were carefully evaluated after administration of short-chained poly (vinyl alcohol, (PVA)) solution or poly (ethylene glycol (PEG))-shielded perfluorodecalin-filled poly (d,l-lactide-co-glycolide, PFD-filled PLGA) microcapsules into Wistar rats. Whereas PVA infusion was well tolerated, all animals survived the selected dose of 1247 mg microcapsules/kg body weight but showed marked toxicity (increased enzyme activities, rising pro-inflammatory cytokines and complement factors) and developed a mild metabolic acidosis. The observed hypotension emerging immediately after start of capsule infusion was transient and mean arterial blood pressure restored to baseline within 70 min. Microcapsules accumulated in spleen and liver (but not in other organs) and partly occluded hepatic microcirculation reducing sinusoidal perfusion rate by about 20%.Intravenous infusion of high amounts of PFD-filled PLGA microcapsules was tolerated temporarily but associated with severe side effects such as hypotension and organ damage. Short-chained PVA displays excellent biocompatibility and thus, can be utilized as emulsifier for the preparation of drug carriers designed for intravenous use.
Poly(n-butyl-cyanoacrylate)-nanocapsules filled by perfluorodecalin (PFD) are proposed as potential oxygen carriers for blood substitute. The capsule dispersion is prepared via interfacial polymerisation from a PFD emulsion in water which in turn is generated by spontaneous phase separation. The resulting dispersion is capable of carrying approximately 10% of its own volume of gaseous oxygen, which is approximately half of the capacity of human blood. The volumes of the organic solvents and water are varied within a wide range, connected to a change of the capsule radius between 200 and 400 nm. The principal suitability of the capsule dispersion for intravenous application is proven in first physiological experiments. A total amount of 10 ml/kg body weight has been infused into rats, with the dispersion supernatant and a normal saline solution as controls. After the infusion of nanocapsules, the blood pressure as well as the heart rate remains constant on a normal level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.