The host response against foreign materials designates the biocompatibility of intravenously administered microcapsules and thus, widely affects their potential for subsequent clinical use as artificial oxygen/drug carriers. Therefore, body distribution and systemic parameters, as well as markers of inflammation and indicators of organ damage were carefully evaluated after administration of short-chained poly (vinyl alcohol, (PVA)) solution or poly (ethylene glycol (PEG))-shielded perfluorodecalin-filled poly (d,l-lactide-co-glycolide, PFD-filled PLGA) microcapsules into Wistar rats. Whereas PVA infusion was well tolerated, all animals survived the selected dose of 1247 mg microcapsules/kg body weight but showed marked toxicity (increased enzyme activities, rising pro-inflammatory cytokines and complement factors) and developed a mild metabolic acidosis. The observed hypotension emerging immediately after start of capsule infusion was transient and mean arterial blood pressure restored to baseline within 70 min. Microcapsules accumulated in spleen and liver (but not in other organs) and partly occluded hepatic microcirculation reducing sinusoidal perfusion rate by about 20%.Intravenous infusion of high amounts of PFD-filled PLGA microcapsules was tolerated temporarily but associated with severe side effects such as hypotension and organ damage. Short-chained PVA displays excellent biocompatibility and thus, can be utilized as emulsifier for the preparation of drug carriers designed for intravenous use.
With regard to the development of artificial blood substitutes, perfluorodecalin-filled poly(n-butyl-cyanoacrylate) nanocapsules are already discussed for the use as artificial oxygen carriers. The aim of the present study was to thoroughly investigate the preclinical safety and biocompatibility of the perfluorodecalin-filled poly(n-butyl-cyanoacrylate) nanocapsules prepared by interfacial polymerization. Nanocapsules were assessed for physical and microbial stability. Subsequent to intravenous infusion to anesthetized rats, effects on systemic parameters, microcirculation, circulatory in vivo half-life, acid base/metabolic status, organ damage and biodistribution were evaluated using inter alia 19F-NMR spectroscopy and in vivo microscopy. Perfluorodecalin-filled poly(n-butyl-cyanoacrylate) nanocapsules displayed physical and microbial stability over a period of 4 weeks and the circulatory in vivo half-life was t1/2 = 30 min. In general, all animals tolerated intravenous infusion of the prepared nanocapsules, even though several side-effects occurred. As a consequence of nanocapsule infusion, a transient decrease in mean arterial blood pressure, impairment of hepatic microcirculation, organ/tissue damage of liver, spleen and small intestine, as well as an elevation of plasma enzyme activities such as lactate dehydrogenase, creatine kinase and aspartate aminotransferase could be observed. The assessment of the distribution pattern revealed nanocapsule accumulation in spleen, kidney and small intestine. Perfluorodecalin-filled poly(n-butyl-cyanoacrylate) nanocapsules conformed to basic requirements of drugs under preclinical development but further improvement is needed to establish these nanocapsules as novel artificial oxygen carriers.
Perfluorodecalin (PFD) is an established artificial oxygen carrier due to its physical capability to solve the respiratory gases oxygen and carbon dioxide. PFD-filled poly(n-butyl-cyanoacrylate) (PACA) nanocapsules are already discussed as effective artificial oxygen carriers, and their principal suitability for intravenous administration had been shown. To further elucidate their action in vivo, it is imperative to characterise their preclinical safety and particularly their biodistribution. For these purposes, intravital fluorescence microscopy would display an attractive technique in order to monitor the PACA nanocapsules in vivo, but unfortunately, it is impossible to stain the PACA nanocapsules with a fluorescent dye fulfilling special criteria required for in vivo microscopy. In order to develop such a dye, a long-chained fluorinated thiol was used to modify a BODIPY derivative that is a highly fluorescent organic compound belonging to the difluoro-boraindacene family, as well as to functionalise mesoscopic systems, such as CdSe/ZnS-quantum dots and gold nanoparticles. Furthermore, a functionalisation of porphyrin derivatives was investigated by placing divalent ions in the centre of these systems. Due to the high solubility of all synthesised dyes in PFD, it should be possible to stain PFD-filled particles in general. However, only the functionalised BODIPY derivative was suitable for in vivo monitoring of the PFD-filled PACA nanocapsules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.