Synchronizing thousands of 100% efficient rotors in a macrodevice for harvesting noise is unapprehended. Thermodynamically, realizing a thermal gradient at the atomic scale is critical. Harvesting free thermal energy or noise by resonance has a hidden clause; either externally activating a directed self-powered motion or constructing a nanoscale power supply. To accomplish this, we combined two rotor concepts, Brownian rotor, BR, and power stroke, PS, rotors available in living systems in two planes of a single molecule. Quantum tunneling images reveal how a radio-wave guided synchronization of PS-BR combination tweaks rotational dynamics of a rotor to bypass the necessity of temperature gradient (ΔT). Live imaging of thermal noise movement as electron density between a pair of molecular planes helped in optimizing the rotor design. The rotor's monolayer harvests heat from the liquid's Brownian noise and electromagnetic noise, together delivering a finite, usable power. The chip supplies the power if we wet the surface or shine electric noise.
The relationship between two-phase and three-phase solutions to heterogeneous distillation simulation and optimization problems is studied. Simulation results illustrate that bifurcation points can occur in the two-phase solutions and that, in regions of steady-state two-phase solution multiplicity, not
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.