Cytosine methylation is a repressive, epigenetically propagated DNA modification. Although patterns of DNA methylation seem tightly regulated in mammals, it is unclear how these are specified and to what extent this process entails genetic or epigenetic regulation. To dissect the role of the underlying DNA sequence, we sequentially inserted over 50 different DNA elements into the same genomic locus in mouse stem cells. Promoter sequences of approximately 1,000 bp autonomously recapitulated correct DNA methylation in pluripotent cells. Moreover, they supported proper de novo methylation during differentiation. Truncation analysis revealed that this regulatory potential is contained within small methylation-determining regions (MDRs). MDRs can mediate both hypomethylation and de novo methylation in cis, and their activity depends on developmental state, motifs for DNA-binding factors and a critical CpG density. These results demonstrate that proximal sequence elements are both necessary and sufficient for regulating DNA methylation and reveal basic constraints of this regulation.
Expression of the genes in the ADE regulon of Saccharomyces cerevisiae is repressed by the presence of purine bases in the extracellular medium and derepressed when cells are grown in the absence of purines. Derepression requires the transcriptional activators Bas1 and Pho2, as well as the biosynthetic intermediates 5-phosphoribosyl-4-succinocarboxamide-5-aminoimidazole (SAICAR) and 5-phosphoribosyl-4-carboxamide-5-aminoimidazole (AICAR). In this study, we investigated if nuclear localization and binding to promoter DNA by the activators are regulated by purines. Using indirect immunofluorescence, we found that Bas1 is localized to the nucleus under both repressing and derepressing conditions. Importantly, we detected Bas1 bound to promoter DNA under both conditions using chromatin immunoprecipitation assays at several ADE promoters (ADE1, ADE2, ADE4, and ADE5,7) and HIS4. We analyzed the binding of Bas1 to wild-type and mutant sequences of the ADE5,7 promoters in vivo, and found that Bas1 binds independently to each of its two binding sites. Pho2 was not required for the association of Bas1 with chromosomal DNA, but it was required for an increase in Bas1-immunoprecipitated DNA. The presence of Pho2 at promoters was dependent on Bas1 and occurred only under derepressing conditions when the ADE genes are transcribed at elevated levels. We propose a model for regulation of the ADE genes in which DNA-bound Bas1 is inactive due to masking of its activation domain and Pho2 binds poorly to promoters when cells have sufficient purine nucleotides. Upon limitation for purines, the SAICAR/AICAR regulatory signal is transmitted to the nucleus to increase Bas1 and Pho2 interaction, recruiting Pho2 to promoters and freeing the activation domains for transactivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.