This paper presents the formulation, inkjet printing, and vacuum forming of a conductive and stretchable polymer, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), ink on a stretchable and transparent thermoplastic polyurethane (TPU) substrate. The formulation of the conductive and stretchable ink is achieved by combining PEDOT:PSS with additional solvents, to achieve the right inkjet properties for drop-on-demand (DoD) inkjet printing. A conductive pattern can be printed from the 21 µm orifice on a flexible and stretchable TPU substrate, with a linewidth down to 44 µm. The properties of the printed pattern, in terms of sheet resistance, morphology, transparency, impact of weather conditions, and stretching are investigated and show sheet resistances up to 45 Ohm/sq and transparencies as high as 95%, which is comparable to indium tin oxide (ITO). Moreover, in contrast to ITO, one-time stretching up to 40% can be achieved, increasing the sheet resistance up to 214 Ohm/sq only, showing the great potential of this ink for one-time stretching. Finally, as a proof of this one-time stretching, the printed samples are vacuum formed around a 3D object, still showing sufficient conductivity to be applied as a capacitive touch sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.